B: Biology

B.1: The fundamental life processes of plants and animals depend on a variety of chemical reactions that occur in specialized areas of the organism's cells

B.1.1: Cells are enclosed within semi-permeable membranes that regulate their interaction with their surroundings.

Cell Structure
Osmosis

B.1.3: Prokaryotic cells, eukaryotic cells (including those from plants and animals), and viruses differ in complexity and general structure.

Virus Life Cycle (Lytic)

B.1.4: The central dogma of molecular biology outlines the flow of information from transcription of ribonucleic acid (RNA) in the nucleus to translation of proteins on ribosomes in the cytoplasm.

Building DNA
Cell Structure
RNA and Protein Synthesis

B.1.6: Usable energy is captured from sunlight by chloroplasts and is stored through the synthesis of sugar from carbon dioxide.

Cell Energy Cycle
Photosynthesis Lab

B.1.7: The role of the mitochondria is making stored chemical-bond energy available to cells by completing the breakdown of glucose to carbon dioxide.

Cell Energy Cycle
Cell Structure
Photosynthesis Lab

B.2: Mutation and sexual reproduction lead to genetic variation in a population

B.2.3: Random chromosome segregation explains the probability that a particular allele will be in a gamete.

Chicken Genetics
Mouse Genetics (One Trait)
Mouse Genetics (Two Traits)

B.2.6: Genes on specific chromosomes determine an individual’s sex.

Chicken Genetics
Human Karyotyping
Mouse Genetics (One Trait)
Mouse Genetics (Two Traits)

B.2.7: Possible combinations of alleles in a zygote can be predicted from the genetic makeup of the parents.

Chicken Genetics
Mouse Genetics (One Trait)
Mouse Genetics (Two Traits)

B.3: A multicellular organism develops from a single zygote, and its phenotype depends on its genotype, which is established at fertilization.

B.3.1: The probable outcome of phenotypes in a genetic cross can be predicted from the genotypes of the parents and mode of inheritance (autosomal or X-linked, dominant or recessive).

Chicken Genetics
Hardy-Weinberg Equilibrium
Microevolution
Mouse Genetics (One Trait)
Mouse Genetics (Two Traits)

B.3.2: Mendel’s laws of segregation and independent assortment are the basis of genetics.

Chicken Genetics
Mouse Genetics (One Trait)
Mouse Genetics (Two Traits)

B.3.3: The probable mode of inheritance can be predicted from a pedigree diagram showing phenotypes.

Chicken Genetics
Mouse Genetics (One Trait)
Mouse Genetics (Two Traits)

B.4: Genes are a set of instructions encoded in the DNA sequence of each organism that specify the sequence of amino acids in proteins characteristic of that organism.

B.4.1: Ribosomes synthesize proteins, using tRNAs to translate genetic information in the mRNA.

Cell Structure
RNA and Protein Synthesis

B.4.2: The sequence of amino acids in a protein can be predicted from the sequence of codons in the RNA, by applying universal genetic coding rules.

RNA and Protein Synthesis

B.4.3: Mutations in the DNA sequence of a gene may or may not affect the expression of the gene or the sequence of amino acids in an encoded protein.

Evolution: Mutation and Selection

B.4.4: Specialization of cells in multi-cellular organisms is usually due to different patterns of gene expression rather than to differences of the genes themselves.

Chicken Genetics
Mouse Genetics (One Trait)
Mouse Genetics (Two Traits)

B.5: The genetic composition of cells can be altered by incorporation of exogenous DNA into the cells

B.5.1: The precise copying of DNA during semi-conservative replication and transcription of information from DNA into mRNA is based on base-pairing rules.

Building DNA
RNA and Protein Synthesis

B.6: Stability in an ecosystem is a balance between competing effects.

B.6.2: Changes in an ecosystem resulting from changes in climate, human activity, introduction of nonnative species, or changes in population size.

Greenhouse Effect
Rabbit Population by Season
Water Pollution

B.6.4: Water, carbon, and nitrogen cycle between abiotic resources and organic matter in the ecosystem and oxygen cycles through photosynthesis and respiration.

Cell Energy Cycle
Interdependence of Plants and Animals
Photosynthesis Lab

B.6.5: A vital part of an ecosystem is the stability of its producers and decomposers.

Food Chain

B.6.7: The accommodation of an individual organism to its environment is different from the gradual adaptation of a lineage of organisms through genetic change.

Evolution: Mutation and Selection
Natural Selection

B.7: The frequency of an allele in a gene pool of a population depends on many factors and may be stable or unstable over time.

B.7.1: Natural selection acts on the phenotype rather than the genotype of an organism.

Evolution: Mutation and Selection
Hardy-Weinberg Equilibrium
Microevolution
Natural Selection

B.7.2: Alleles that are lethal in a homozygous individual may be carried in a heterozygote and thus maintained in a gene pool.

Chicken Genetics
Mouse Genetics (One Trait)
Mouse Genetics (Two Traits)

B.7.3: New mutations are constantly being generated in a gene pool.

Evolution: Mutation and Selection

B.7.4: Variation within a species increases the likelihood that at least some members of a species will survive under changed environmental conditions.

Microevolution

B.8: Evolution is the result of genetic changes that occur in constantly changing environments.

B.8.1: Natural selection determines the differential survival of groups of organisms.

Evolution: Mutation and Selection
Natural Selection

B.8.2: A great diversity of species increases the chance that at least some organisms survive major changes in the environment.

Microevolution

B.8.3: Genetic drift affects the diversity of organisms in a population.

Microevolution

B.8.5: Fossil evidence contributes to our understanding of biological diversity, episodic speciation, and mass extinction.

Human Evolution - Skull Analysis
Natural Selection

B.8.6: Several independent molecular clocks, calibrated against each other and combined with evidence from the fossil record, can help to estimate how long ago various groups of organisms diverged evolutionarily from one another.

Human Evolution - Skull Analysis
Microevolution

B.9: As a result of the coordinated structures and functions of organ systems, the internal environment of the human body remains relatively stable (homeostatic) despite changes in the outside environment.

B.9.1: The complementary activity of major body systems provides cells with oxygen and nutrients and removes toxic waste products such as carbon dioxide.

Cell Structure
Paramecium Homeostasis

B.9.9: Actin, myosin, Caƒy2, and ATP have a role in the cellular and molecular basis of muscle contraction.

Cell Energy Cycle

B.9.10: Hormones (including digestive, reproductive, osmo-regulatory) provide internal feedback mechanisms for homeostasis at the cellular level and in whole organisms.

Human Homeostasis
Paramecium Homeostasis

B.10: Organisms have a variety of mechanisms to combat disease

B.10.4: There are important differences between bacteria and viruses with respect to their requirements for growth and replication, the body’s primary defenses against bacterial and viral infections, and effective treatments of these infections.

Virus Life Cycle (Lytic)

E: Earth Science

E.1: Earth-based and space-based astronomy reveal the structure, scale, and changes in stars, galaxies, and the universe over time

E.1.1: The differences and similarities among the sun, the terrestrial planets, and the gas planets may have been established during the formation of the solar system.

Solar System Explorer

E.1.6: The solar system is located in an outer edge of the disc-shaped Milky Way galaxy, which spans 100,000 light years.

Solar System Explorer

E.1.8: Evidence indicating that all elements with an atomic number greater than that of lithium have been formed by nuclear fusion in stars.

Element Builder

E.2: Plate tectonics operating over geologic time has changed the patterns of land, sea, and mountains on Earth's surface

E.2.1: Features of the ocean floor, as well as the shape and rock composition of the major plates provide evidence of plate tectonics.

Plate Tectonics

E.2.2: Volcanic eruptions and earthquakes are the result of movement of matter and energy within the Earth.

Earthquake - Determination of Epicenter
Earthquake - Recording Station
Plate Tectonics

E.2.3: The properties of rocks and minerals can be explained based on the physical and chemical conditions in which they were formed, including plate tectonic processes.

Plate Tectonics
Rock Classification

E.3: Energy enters the Earth system primarily as solar radiation and eventually escapes as heat.

E.3.2: Some of the solar radiation is reflected back into the atmosphere, some is absorbed by matter and photosynthetic processes.

Laser Reflection

E.3.4: The greenhouse effect may cause climatic changes.

Greenhouse Effect

E.4: Heating of Earth's surface and atmosphere by the sun drives convection within the atmosphere and oceans, producing winds and ocean currents

E.4.4: The interaction of wind patterns, ocean currents, and the distribution of land masses result in a global pattern of latitudinal bands of rain forests and deserts.

Coastal Winds and Clouds
Weather Maps

E.5: Climate is the long-term average of a region's weather and depends on many factors.

E.5.1: Weather and climate involve the transfer of energy into and out of the atmosphere.

Coastal Winds and Clouds
Greenhouse Effect
Seasons Around the World
Seasons in 3D
Seasons: Earth, Moon, and Sun
Seasons: Why do we have them?

E.5.2: Latitude, elevation, topography, and proximity to large bodies of water and cold or warm ocean currents affect the climate.

Coastal Winds and Clouds

E.5.3: Earth's climate has changed over time, corresponding to changes in Earth's geography, atmospheric composition, and other factors, such as solar radiation and plate movement.

Plate Tectonics

E.6: Each element on Earth moves among reservoirs, which exist in the solid earth, in oceans, in the atmosphere, and within and among organisms as part of biogeochemical cycles.

E.6.1: The movement of matter among reservoirs is driven by Earth's internal and external sources of energy.

Interdependence of Plants and Animals
Nuclear Decay

E.6.2: Carbon cycles through the reservoirs of the atmosphere, lithosphere, hydrosphere and biosphere.

Cell Energy Cycle
Interdependence of Plants and Animals

C: Chemistry

C.1: The periodic table displays the elements in increasing atomic number and shows how periodicity of the physical and chemical properties of the elements relates to atomic structure

C.1.1: The nucleus of the atom is much smaller than the atom yet contains most of its mass.

Element Builder
Nuclear Decay

C.1.2: The quantum model of the atom is based on experiments and analyses by many scientists, including Dalton, Thomson, Bohr, Rutherford, Millikan, and Einstein.

Bohr Model of Hydrogen
Bohr Model: Introduction

C.1.3: The position of an element in the periodic table is related to its atomic number.

Element Builder
Nuclear Decay

C.1.4: The periodic table can be used to identify metals, semimetals, non-metals, and halogens.

Electron Configuration
Element Builder
Ionic Bonds

C.1.5: The periodic table can be used to identify trends in ionization energy, electronegativity, the relative sizes of ions and atoms and the number of electrons available for bonding.

Covalent Bonds
Dehydration Synthesis
Electron Configuration
Ionic Bonds

C.1.6: The electronic configuration of elements and their reactivity can be identified based on their position in the periodic table.

Electron Configuration
Ionic Bonds

C.2: Biological, chemical, and physical properties of matter result from the ability of atoms to form bonds from electrostatic forces between electrons and protons and between atoms and molecules

C.2.2: Chemical bonds between atoms in molecules such as H2, CH4, NH3, H2CCH2, N2, Cl2, and many large biological molecules are covalent.

Covalent Bonds
Dehydration Synthesis

C.2.5: Lewis dot structures can provide models of atoms and molecules.

Bohr Model of Hydrogen
Bohr Model: Introduction
Covalent Bonds

C.2.8: Solids and liquids held together by van der Waals forces or hydrogen bonds that affect their volatility and boiling/melting point temperatures.

Colligative Properties

C.3: The conservation of atoms in chemical reactions leads to the principle of conservation of matter and the ability to calculate the mass of products and reactants.

C.3.1: Chemical reactions can be described by writing balanced equations.

Balancing Chemical Equations
Chemical Equation Balancing

C.3.2: The quantity one mole is set by defining one mole of carbon-12 atoms to have a mass of exactly 12 grams.

Stoichiometry

C.3.3: One mole equals 6.02.x 1023 particles (atoms or molecules).

Stoichiometry

C.3.4: The molar mass of a molecule can be determined from its chemical formula and a table of atomic masses

Stoichiometry

C.3.5: The mass of a molecular substance can be converted to moles, number of particles, or volume of gas at standard temperature and pressure.

Stoichiometry

C.4: Chemical reaction rates depend on factors that influence the frequency of collision of reactant molecules.

C.4.1: The rate of reaction is the decrease in concentration of reactants or the increase in concentration of products with time.

Collision Theory

C.4.2: Reaction rates depend on such factors as concentration, temperature and pressure.

Collision Theory

C.4.4: Catalyst plays a role in increasing the reaction rate by changing the activation energy in a chemical reaction.

Collision Theory

P: Physics

P.1: Newton's laws predict the motion of most objects

P.1.1: When forces are balanced, no acceleration occurs; thus an object continues to move at a constant speed or stays at rest.

Atwood Machine
Fan Cart Physics
Freefall Laboratory
Uniform Circular Motion

P.1.2: The law F = ma is used to solve motion problems that involve constant forces.

Atwood Machine
Fan Cart Physics

P.1.3: When one object exerts a force on a second object, the second object always exerts a force of equal magnitude and in the opposite direction.

2D Collisions
Air Track
Gravitational Force
Uniform Circular Motion

P.1.4: Applying a force to an object perpendicular to the direction of its motion causes the object to change direction.

Uniform Circular Motion

P.1.5: Circular motion requires the application of a constant force directed toward the center of the circle.

Uniform Circular Motion

P.1.6: Newton's laws are not exact but provide very good approximations unless an object is small enough that quantum effects become important.

2D Collisions
Air Track
Atwood Machine
Fan Cart Physics
Uniform Circular Motion

P.2: The laws of conservation of energy and momentum provide a way to predict and describe the movement of objects

P.2.1: Kinetic energy can be calculated by using the formula E = (1/2)mv2.

Air Track
Energy of a Pendulum
Inclined Plane - Sliding Objects
Roller Coaster Physics

P.2.2: Changes in gravitational potential energy near Earth can be calculated by using the formula (change in potential energy) = mgh.

Energy of a Pendulum
Inclined Plane - Sliding Objects
Potential Energy on Shelves
Roller Coaster Physics

P.2.3: Momentum is calculated as the product mv.

2D Collisions
Air Track

P.2.4: Momentum is a separately conserved quantity different from energy.

2D Collisions
Air Track

P.2.5: An unbalanced force on an object produces a change in its momentum.

Atwood Machine
Fan Cart Physics
Inclined Plane - Simple Machine
Roller Coaster Physics
Uniform Circular Motion

P.2.6: The principles of conservation of momentum and energy can be used to solve problems involving elastic and inelastic collisions.

2D Collisions
Air Track

P.3: Energy cannot be created or destroyed, although in many processes energy is transferred to the environment as heat

P.3.1: Heat flow and work are two forms of energy transfer between systems.

Calorimetry Lab
Pulley Lab

P.3.2: The work done by a heat engine that is working in a cycle is the difference between the heat flow into the engine at high temperature and the heat flow out at a lower temperature.

Calorimetry Lab

P.3.3: The internal energy of an object includes the energy of random motion of the object's atoms and molecules. The greater the temperature of the object, the greater the energy of motion of the atoms and molecules that make up the object.

Boyle's Law and Charles' Law
Relative Humidity
Temperature and Particle Motion

P.4: Waves have characteristic properties that do not depend on the type of wave

P.4.1: Waves carry energy from one place to another.

Bohr Model of Hydrogen
Bohr Model: Introduction
Photoelectric Effect

P.4.2: Transverse and longitudinal waves exist in mechanical media, such as springs and ropes, and in the earth as seismic waves.

Earthquake - Recording Station

P.4.3: Wavelength, frequency, and wave speed are related.

Photoelectric Effect
Sound Beats and Sine Waves

P.4.4: Sound is a longitudinal wave whose speed depends on the properties of the medium in which it propagates.

Sound Beats and Sine Waves

P.4.6: Waves have characteristic behaviors such as interference, diffraction, refraction and polarization.

Ray Tracing (Lenses)
Refraction
Sound Beats and Sine Waves

P.4.7: Beats and the Doppler Effect result from the characteristic behavior of waves.

Doppler Shift
Doppler Shift Advanced

P.5: Electric and magnetic phenomena are related and have many practical applications.

P.5.1: The voltage or current in simple direct current (DC) electric circuits constructed from batteries, wires, resistors, and capacitors can be predicted using Ohm's law.

Advanced Circuits
Circuits

P.5.2: Any resistive element in a DC circuit dissipates energy, which heats the resistor.

Advanced Circuits
Circuits

P.5.7: Plasmas, the fourth state of matter, contain ions or free electrons or both and conduct electricity.

Element Builder

Correlation last revised: 12/1/2009

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.