L1: Based on their knowledge of the properties of arithmetic, students understand and reason about numbers, number systems, and the relationships between them. They represent quantitative relationships using mathematical symbols, and interpret relationships from those representations.

L1.1: Number Systems and Number Sense

L1.1.1: Know the different properties that hold in different number systems and recognize that the applicable properties change in the transition from the positive integers to all integers, to the rational numbers, and to the real numbers.

 Addition of Polynomials
 Rational Numbers, Opposites, and Absolute Values

L1.1.3: Explain how the properties of associativity, commutativity, and distributivity, as well as identity and inverse elements, are used in arithmetic and algebraic calculations.

 Equivalent Algebraic Expressions I
 Equivalent Algebraic Expressions II
 Operations with Radical Expressions
 Simplifying Algebraic Expressions I
 Simplifying Algebraic Expressions II
 Solving Algebraic Equations I
 Square Roots

L1.1.6: Explain the importance of the irrational numbers the square root of 2 and the square root of 3 in basic right triangle trigonometry, and the importance of pi because of its role in circle relationships.

 Circumference and Area of Circles

L1.2: Representations and Relationships

L1.2.1: Use mathematical symbols to represent quantitative relationships and situations.

 Square Roots
 Using Algebraic Expressions

L1.2.3: Use vectors to represent quantities that have magnitude and direction, interpret direction and magnitude of a vector numerically, and calculate the sum and difference of two vectors.

 Adding Vectors
 Vectors

L1.2.4: Organize and summarize a data set in a table, plot, chart, or spreadsheet; find patterns in a display of data; understand and critique data displays in the media.

 Box-and-Whisker Plots
 Correlation
 Describing Data Using Statistics
 Stem-and-Leaf Plots

L1.3: Counting and Probabilistic Reasoning

L1.3.1: Describe, explain, and apply various counting techniques; relate combinations to Pascal?s triangle; know when to use each technique.

 Binomial Probabilities

L1.3.2: Define and interpret commonly used expressions of probability.

 Probability Simulations
 Theoretical and Experimental Probability

L2: Students calculate fluently, estimate proficiently, and describe and use algorithms in appropriate situations (e.g., approximating solutions to equations). They understand the basic ideas of iteration and algorithms.

L2.1: Calculation Using Real and Complex Numbers

L2.1.2: Calculate fluently with numerical expressions involving exponents; use the rules of exponents; evaluate numerical expressions involving rational and negative exponents; transition easily between roots and exponents.

 Square Roots

L2.1.4: Know that the complex number i is one of two solutions to x² = -1.

 Points in the Complex Plane
 Roots of a Quadratic

L2.1.5: Add, subtract, and multiply complex numbers; use conjugates to simplify quotients of complex numbers.

 Points in the Complex Plane
 Roots of a Quadratic

L2.1.7: Understand the mathematical bases for the differences among voting procedures.

 Polling: City

L2.2: Sequences and Iteration

L2.2.1: Find the nth term in arithmetic, geometric, or other simple sequences.

 Arithmetic Sequences
 Geometric Sequences

L2.3: Measurement Units, Calculations, and Scales

L2.3.1: Convert units of measurement within and between systems; explain how arithmetic operations on measurements affect units, and carry units through calculations correctly.

 Unit Conversions

L2.4: Understanding Error

L2.4.3: Know the meaning of and interpret statistical significance, margin of error, and confidence level.

 Polling: City
 Polling: Neighborhood

L3: Students understand mathematical reasoning as being grounded in logic and proof and can distinguish mathematical arguments from other types of arguments. They can interpret arguments made about quantitative situations in the popular media. Students know the language and laws of logic and can apply them in both mathematical and everyday settings. They write proofs using direct and indirect methods and use counterexamples appropriately to show that statements are false.

L3.1: Mathematical Reasoning

L3.1.3: Define and explain the roles of axioms (postulates), definitions, theorems, counterexamples, and proofs in the logical structure of mathematics. Identify and give examples of each.

 Biconditional Statements
 Investigating Angle Theorems
 Isosceles and Equilateral Triangles

L3.2: Language and Laws of Logic

L3.2.1: Know and use the terms of basic logic.

 Biconditional Statements
 Conditional Statements

L3.2.2: Use the connectives ?not,? ?and,? ?or,? and ?if?, then,? in mathematical and everyday settings. Know the truth table of each connective and how to logically negate statements involving these connectives.

 Conditional Statements

L3.2.4: Write the converse, inverse, and contrapositive of an ?if?, then?? statement. Use the fact, in mathematical and everyday settings, that the contrapositive is logically equivalent to the original, while the inverse and converse are not.

 Biconditional Statements
 Conditional Statements

L3.3: Proof

L3.3.1: Know the basic structure for the proof of an ?if?, then?? statement (assuming the hypothesis and ending with the conclusion) and that proving the contrapositive is equivalent.

 Biconditional Statements
 Conditional Statements

L3.3.3: Explain the difference between a necessary and a sufficient condition within the statement of a theorem. Determine the correct conclusions based on interpreting a theorem in which necessary or sufficient conditions in the theorem or hypothesis are satisfied.

 Biconditional Statements
 Conditional Statements

A1: Students recognize, construct, interpret, and evaluate expressions. They fluently transform symbolic expressions into equivalent forms. They determine appropriate techniques for solving each type of equation, inequality, or system of equations, apply the techniques correctly to solve, justify the steps in the solutions, and draw conclusions from the solutions. They know and apply common formulas.

A1.1: Construction, Interpretation, and Manipulation of Expressions

A1.1.1: Give a verbal description of an expression that is presented in symbolic form, write an algebraic expression from a verbal description, and evaluate expressions given values of the variables.

 Solving Equations on the Number Line
 Using Algebraic Equations
 Using Algebraic Expressions

A1.1.3: Factor algebraic expressions using, for example, greatest common factor, grouping, and the special product identities.

 Factoring Special Products
 Modeling the Factorization of ax2+bx+c
 Simplifying Algebraic Expressions II

A1.1.4: Add, subtract, multiply, and simplify polynomials and rational expressions.

 Addition and Subtraction of Functions
 Addition of Polynomials
 Modeling the Factorization of x2+bx+c
 Simplifying Algebraic Expressions II

A1.1.7: Transform trigonometric expressions into equivalent forms using basic identities such as sin² theta + cos² theta = 1 and tan² theta + 1 = sec² theta

 Simplifying Trigonometric Expressions
 Sum and Difference Identities for Sine and Cosine

A1.2: Solutions of Equations and Inequalities

A1.2.1: Write equations and inequalities with one or two variables to represent mathematical or applied situations, and solve.

 Compound Inequalities
 Modeling and Solving Two-Step Equations
 Solving Algebraic Equations II
 Solving Equations on the Number Line
 Solving Linear Inequalities in One Variable

A1.2.3: Solve linear and quadratic equations and inequalities including systems of up to three linear equations with three unknowns. Justify steps in the solution, and apply the quadratic formula appropriately.

 Cat and Mouse (Modeling with Linear Systems)
 Exploring Linear Inequalities in One Variable
 Linear Inequalities in Two Variables
 Modeling One-Step Equations
 Modeling and Solving Two-Step Equations
 Quadratic Inequalities
 Roots of a Quadratic
 Solving Algebraic Equations II
 Solving Equations by Graphing Each Side
 Solving Linear Inequalities in One Variable
 Solving Linear Systems (Matrices and Special Solutions)
 Solving Linear Systems (Slope-Intercept Form)
 Solving Linear Systems (Standard Form)
 Solving Two-Step Equations
 Standard Form of a Line
 Systems of Linear Inequalities (Slope-intercept form)

A1.2.4: Solve absolute value equations and inequalities, and justify steps in the solution.

 Absolute Value Equations and Inequalities
 Absolute Value with Linear Functions
 Compound Inequalities

A1.2.6: Solve power equations and equations including radical expressions, justify steps in the solution, and explain how extraneous solutions may arise.

 Operations with Radical Expressions
 Radical Functions

A1.2.7: Solve exponential and logarithmic equations, and justify steps in the solution.

 Exponential Functions

A1.2.9: Know common formulas and apply appropriately in contextual situations.

 Cat and Mouse (Modeling with Linear Systems)
 Circles
 Compound Interest

A2: Students understand functions, their representations, and their attributes. They perform transformations, combine and compose functions, and find inverses. Students classify functions and know the characteristics of each family. They work with functions with real coefficients fluently. Students construct or select a function to model a real-world situation in order to solve applied problems. They draw on their knowledge of families of functions to do so.

A2.1: Definitions, Representations, and Attributes of Functions

A2.1.1: Determine whether a relationship (given in contextual, symbolic, tabular, or graphical form) is a function and identify its domain and range.

 Introduction to Functions

A2.1.3: Represent functions in symbols, graphs, tables, diagrams, or words and translate among representations.

 Introduction to Functions
 Points, Lines, and Equations
 Quadratics in Vertex Form

A2.1.7: Identify and interpret the key features of a function from its graph or its formula(e).

 Absolute Value with Linear Functions
 Exponential Functions
 Linear Functions
 Radical Functions

A2.2: Operations and Transformations

A2.2.1: Combine functions by addition, subtraction, multiplication, and division.

 Addition and Subtraction of Functions

A2.2.3: Recognize whether a function (given in tabular or graphical form) has an inverse and recognize simple inverse pairs.

 Logarithmic Functions

A2.2.6: Know and interpret the function notation for inverses and verify that two functions are inverses using composition.

 Logarithmic Functions

A2.3: Representations of Functions

A2.3.1: Identify a function as a member of a family of functions based on its symbolic or graphical representation; recognize that different families of functions have different asymptotic behavior.

 Absolute Value with Linear Functions
 Exponential Functions
 Linear Functions
 Logarithmic Functions
 Radical Functions

A2.3.2: Describe the tabular pattern associated with functions having constant rate of change (linear); or variable rates of change.

 Compound Interest
 Direct and Inverse Variation
 Points, Lines, and Equations
 Slope-Intercept Form of a Line

A2.4: Models of Real-world Situations Using Families of Functions

A2.4.4: Use methods of linear programming to represent and solve simple real-life problems.

 Linear Programming

A3: Students study the symbolic and graphical forms of each function family. By recognizing the unique characteristics of each family, they can use them as tools for solving problems or for modeling real-world situations.

A3.1: Lines and Linear Functions

A3.1.1: Write the symbolic forms of linear functions (standard, point-slope, and slope-intercept) given appropriate information, and convert between forms.

 Point-Slope Form of a Line
 Points, Lines, and Equations
 Slope-Intercept Form of a Line
 Standard Form of a Line

A3.1.2: Graph lines (including those of the form x = h and y = k) given appropriate information.

 Point-Slope Form of a Line
 Slope-Intercept Form of a Line
 Standard Form of a Line

A3.1.4: Find an equation of the line parallel or perpendicular to given line, through a given point; understand and use the facts that non-vertical parallel lines have equal slopes, and that non-vertical perpendicular lines have slopes that multiply to give -1.

 Cat and Mouse (Modeling with Linear Systems)

A3.2: Exponential and Logarithmic Functions

A3.2.1: Write the symbolic form and sketch the graph of an exponential function given appropriate information.

 Compound Interest
 Exponential Functions
 Introduction to Exponential Functions
 Logarithmic Functions

A3.2.2: Interpret the symbolic forms and recognize the graphs of exponential and logarithmic functions; recognize the logarithmic function as the inverse of the exponential function.

 Compound Interest
 Exponential Functions
 Introduction to Exponential Functions
 Logarithmic Functions

A3.2.3: Apply properties of exponential and logarithmic functions.

 Exponential Functions
 Logarithmic Functions

A3.2.4: Understand and use the fact that the base of an exponential function determines whether the function increases or decreases and understand how the base affects the rate of growth or decay.

 Logarithmic Functions

A: Algebra and Functions

A.3.2.5: Relate exponential and logarithmic functions to real phenomena, including half-life and doubling time.

 Compound Interest

A3.3: Quadratic Functions

A3.3.1: Write the symbolic form and sketch the graph of a quadratic function given appropriate information.

 Addition and Subtraction of Functions
 Exponential Functions
 Quadratics in Factored Form
 Quadratics in Polynomial Form
 Quadratics in Vertex Form
 Roots of a Quadratic
 Translating and Scaling Functions
 Zap It! Game

A3.3.2: Identify the elements of a parabola (vertex, axis of symmetry, direction of opening) given its symbolic form or its graph, and relate these elements to the coefficient(s) of the symbolic form of the function.

 Addition and Subtraction of Functions
 Ellipses
 Holiday Snowflake Designer
 Hyperbolas
 Parabolas
 Translating and Scaling Functions
 Zap It! Game

A3.3.3: Convert quadratic functions from standard to vertex form by completing the square.

 Circles

A3.3.4: Relate the number of real solutions of a quadratic equation to the graph of the associated quadratic function.

 Quadratics in Factored Form
 Quadratics in Polynomial Form
 Quadratics in Vertex Form
 Roots of a Quadratic

A3.3.5: Express quadratic functions in vertex form to identify their maxima or minima, and in factored form to identify their zeros.

 Quadratics in Factored Form
 Quadratics in Polynomial Form
 Quadratics in Vertex Form

A3.4: Power Functions

A3.4.2: Express direct and inverse relationships as functions and recognize their characteristics.

 Direct and Inverse Variation

A3.5: Polynomial Functions

A3.5.1: Write the symbolic form and sketch the graph of simple polynomial functions.

 Graphs of Polynomial Functions
 Polynomials and Linear Factors
 Quadratics in Factored Form
 Quadratics in Vertex Form

A3.5.2: Understand the effects of degree, leading coefficient, and number of real zeros on the graphs of polynomial functions of degree greater than 2.

 Graphs of Polynomial Functions
 Polynomials and Linear Factors
 Quadratics in Factored Form
 Quadratics in Vertex Form
 Zap It! Game

A3.5.3: Determine the maximum possible number of zeros of a polynomial function, and understand the relationship between the x-intercepts of the graph and the factored form of the function.

 Graphs of Polynomial Functions
 Polynomials and Linear Factors
 Quadratics in Factored Form

A3.6: Rational Functions

A3.6.1: Write the symbolic form and sketch the graph of simple rational functions.

 General Form of a Rational Function
 Rational Functions

A3.6.2: Analyze graphs of simple rational functions and understand the relationship between the zeros of the numerator and denominator and the function?s intercepts, asymptotes, and domain.

 General Form of a Rational Function
 Rational Functions

A3.7: Trigonometric Functions

A3.7.1: Use the unit circle to define sine and cosine; approximate values of sine and cosine; use sine and cosine to define the remaining trigonometric functions; explain why the trigonometric functions are periodic.

 Cosine Function
 Simplifying Trigonometric Expressions
 Sine Function
 Sine, Cosine, and Tangent Ratios
 Sum and Difference Identities for Sine and Cosine

A3.7.2: Use the relationship between degree and radian measures to solve problems.

 Cosine Function
 Sine Function
 Tangent Function

A3.7.4: Graph the sine and cosine functions; analyze graphs by noting domain, range, period, amplitude, and location of maxima and minima.

 Cosine Function
 Sine Function
 Translating and Scaling Sine and Cosine Functions

A3.7.5: Graph transformations of basic trigonometric functions (involving changes in period, amplitude, and midline) and understand the relationship between constants in the formula and the transformed graph.

 Translating and Scaling Functions
 Translating and Scaling Sine and Cosine Functions

G1: Students represent basic geometric figures, polygons, and conic sections and apply their definitions and properties in solving problems and justifying arguments, including constructions and representations in the coordinate plane. Students represent three-dimensional figures, understand the concepts of volume and surface area, and use them to solve problems. They know and apply properties of common three-dimensional figures.

G1.1: Lines and Angles; Basic Euclidean and Coordinate Geometry

G1.1.1: Solve multi-step problems and construct proofs involving vertical angles, linear pairs of angles supplementary angles, complementary angles, and right angles.

 Investigating Angle Theorems
 Triangle Angle Sum

G1.1.2: Solve multi-step problems and construct proofs involving corresponding angles, alternate interior angles, alternate exterior angles, and same-side (consecutive) interior angles.

 Congruence in Right Triangles
 Proving Triangles Congruent
 Similar Figures
 Similarity in Right Triangles
 Triangle Angle Sum

G1.1.3: Perform and justify constructions, including midpoint of a line segment and bisector of an angle, using straightedge and compass.

 Constructing Parallel and Perpendicular Lines
 Segment and Angle Bisectors

G1.1.4: Given a line and a point, construct a line through the point that is parallel to the original line using straightedge and compass. Given a line and a point, construct a line through the point that is perpendicular to the original line. Justify the steps of the constructions.

 Constructing Congruent Segments and Angles
 Constructing Parallel and Perpendicular Lines

G1.1.6: Recognize Euclidean geometry as an axiom system. Know the key axioms and understand the meaning of and distinguish between undefined terms, axioms, definitions, and theorems.

 Investigating Angle Theorems

G1.2: Triangles and Their Properties

G1.2.1: Prove that the angle sum of a triangle is 180° and that an exterior angle of a triangle is the sum of the two remote interior angles.

 Triangle Angle Sum

G1.2.3: Know a proof of the Pythagorean Theorem, and use the Pythagorean Theorem and its converse to solve multistep problems.

 Circles
 Cosine Function
 Distance Formula
 Pythagorean Theorem
 Pythagorean Theorem with a Geoboard
 Sine Function
 Surface and Lateral Areas of Pyramids and Cones
 Tangent Function

G1.2.4: Prove and use the relationships among the side lengths and the angles of 30º- 60º- 90º triangles and 45º- 45º- 90º triangles.

 Cosine Function
 Sine Function
 Tangent Function

G1.3: Triangles and Trigonometry

G1.3.1: Define the sine, cosine, and tangent of acute angles in a right triangle as ratios of sides. Solve problems about angles, side lengths, or areas using trigonometric ratios in right triangles.

 Cosine Function
 Sine Function
 Sine, Cosine, and Tangent Ratios
 Tangent Function

G1.3.3: Determine the exact values of sine, cosine, and tangent for 0°, 30°, 45°, 60°, and their integer multiples and apply in various contexts.

 Cosine Function
 Sine Function
 Tangent Function

G1.4: Quadrilaterals and Their Properties

G1.4.1: Solve multistep problems and construct proofs involving angle measure, side length, diagonal length, perimeter, and area of squares, rectangles, parallelograms, kites, and trapezoids.

 Area of Parallelograms
 Area of Triangles
 Classifying Quadrilaterals
 Parallelogram Conditions
 Perimeter and Area of Rectangles
 Perimeters and Areas of Similar Figures
 Similar Figures
 Square Roots

G1.4.3: Describe and justify hierarchical relationships among quadrilaterals.

 Classifying Quadrilaterals
 Parallelogram Conditions
 Special Parallelograms

G1.4.4: Prove theorems about the interior and exterior angle sums of a quadrilateral.

 Polygon Angle Sum

G1.4.5: Understand the definition of a cyclic quadrillateral and know and use the basic properties of cyclic quadrilaterals.

 Inscribed Angles

G1.5: Other Polygons and Their Properties

G1.5.1: Know and use subdivision or circumscription methods to find areas of polygons.

 Area of Parallelograms
 Area of Triangles
 Perimeter and Area of Rectangles
 Perimeters and Areas of Similar Figures

G1.5.2: Know, justify, and use formulas for the perimeter and area of a regular n-gon and formulas to find interior and exterior angles of a regular n-gon and their sums.

 Area of Triangles
 Polygon Angle Sum

G1.6: Circles and Their Properties

G1.6.2: Solve problems and justify arguments about chords and lines tangent to circles.

 Chords and Arcs

G1.6.3: Solve problems and justify arguments about central angles, inscribed angles, and triangles in circles.

 Chords and Arcs
 Inscribed Angles

G1.6.4: Know and use properties of arcs and sectors and find lengths of arcs and areas of sectors.

 Inscribed Angles

G: Geometry and Trigonometry

G.1.7.1: Find an equation of a circle given its center and radius; given the equation of a circle, find its center and radius.

 Circles

G1.7: Conic Sections and Their Properties

G1.7.2: Identify and distinguish among geometric representations of parabolas, circles, ellipses, and hyperbolas; describe their symmetries, and explain how they are related to cones.

 Addition and Subtraction of Functions
 Circles
 Ellipses
 Hyperbolas
 Parabolas
 Zap It! Game

G1.7.3: Graph ellipses and hyperbolas with axes parallel to the x- and y-axes, given equations.

 Ellipses
 Hyperbolas

G1.7.4: Know and use the relationship between the vertices and foci in and ellipse, the vertices and foci in a hyperboia, and the directrix and focus in a parabola, interpret these relationships in applied contexts.

 Ellipses
 Hyperbolas
 Parabolas

G2: Students use and justify relationships between lines, angles, area and volume formulas, and 2- and 3-dimensional representations. They solve problems and provide proofs about congruence and similarity.

G2.1: Relationships Between Area and Volume Formulas

G2.1.1: Know and demonstrate the relationships between the area formula of a triangle, the area formula of a parallelogram, and the area formula of a trapezoid.

 Area of Parallelograms
 Area of Triangles
 Perimeter and Area of Rectangles

G2.1.2: Know and demonstrate the relationships between the area formulas of various quadrilaterals.

 Area of Parallelograms
 Area of Triangles
 Perimeter and Area of Rectangles

G2.1.3: Know and use the relationship between the volumes of pyramids and prisms (of equal base and height) and cones and cylinders (of equal base and height).

 Prisms and Cylinders
 Pyramids and Cones

G2.2: Relationships Between Two-dimensional and Three-dimensional Representations

G2.2.1: Identify or sketch a possible three-dimensional figure, given two-dimensional views. Create a two-dimensional representation of a three-dimensional figure.

 Surface and Lateral Areas of Prisms and Cylinders

G2.3: Congruence and Similarity

G2.3.1: Prove that triangles are congruent using the SSS, SAS, ASA, and AAS criteria, and that right triangles, are congruent using the hypotenuse-leg criterion.

 Congruence in Right Triangles
 Proving Triangles Congruent

G2.3.2: Use theorems about congruent triangles to prove additional theorems and solve problems, with and without use of coordinates.

 Congruence in Right Triangles
 Proving Triangles Congruent

G2.3.3: Prove that triangles are similar by using SSS, SAS, and AA conditions for similarity.

 Similar Figures

G2.3.4: Use theorems about similar triangles to solve problems with and without use of coordinates.

 Similar Figures

G3: Students will solve problems about distance-preserving transformations and shape-preserving transformations. The transformations will be described synthetically and, in simple cases, by analytic expressions in coordinates.

G3.1: Distance-preserving Transformations: Isometries

G3.1.1: Define reflection, rotation, translation, and glide reflection and find the image of a figure under a given isometry.

 Rotations, Reflections, and Translations
 Similar Figures
 Translations

G3.1.2: Given two figures that are images of each other under an isometry, find the isometry and describe it completely.

 Dilations
 Reflections
 Rotations, Reflections, and Translations
 Translations

G3.2: Shape-preserving Transformations: Dilations and Isometries

G3.2.1: Know the definition of dilation and find the image of a figure under a given dilation.

 Circles
 Dilations
 Rotations, Reflections, and Translations
 Translations

G3.2.2: Given two figures that are images of each other under some dilation, identify the center and magniture of the dilation.

 Dilations

S1: Students plot and analyze univariate data by considering the shape of distributions and analyzing outliers; they find and interpret commonly-used measures of center and variation; and they explain and use properties of the normal distribution.

S1.1: Producing and Interpreting Plots

S1.1.1: Construct and interpret dot plots, histograms, relative frequency histograms, bar graphs, basic control charts, and box plots with appropriate labels and scales; determine which kinds of plots are appropriate for different types of data; compare data sets and interpret differences based on graphs and summary statistics.

 Box-and-Whisker Plots
 Correlation
 Histograms
 Mean, Median, and Mode
 Reaction Time 1 (Graphs and Statistics)
 Real-Time Histogram
 Sight vs. Sound Reactions
 Stem-and-Leaf Plots

S1.1.2: Given a distribution of a variable in a data set, describe its shape, including symmetry or skewness, and state how the shape is related to measures of center (mean and median) and measures of variation (range and standard deviation) with particular attention to the effects of outliers on these measures.

 Box-and-Whisker Plots
 Describing Data Using Statistics
 Mean, Median, and Mode
 Populations and Samples
 Reaction Time 1 (Graphs and Statistics)
 Real-Time Histogram
 Sight vs. Sound Reactions
 Stem-and-Leaf Plots

S1.2: Measures of Center and Variation

S1.2.1: Calculate and interpret measures of center including: mean, median, and mode; explain uses, advantages and disadvantages of each measure given a particular set of data and its context.

 Box-and-Whisker Plots
 Describing Data Using Statistics
 Mean, Median, and Mode
 Populations and Samples
 Reaction Time 1 (Graphs and Statistics)
 Sight vs. Sound Reactions
 Stem-and-Leaf Plots

S1.2.2: Estimate the position of the mean, median, and mode in both symmetrical and skewed distributions, and from a frequency distribution or histogram.

 Mean, Median, and Mode

S1.2.3: Compute and interpret measures of variation, including percentiles, quartiles, interquartile range, variance, and standard deviation.

 Box-and-Whisker Plots
 Polling: City
 Real-Time Histogram
 Sight vs. Sound Reactions

S1.3: The Normal Distribution

S1.3.1: Explain the concept of distribution and the relationship between summary statistics for a data set and parameters of a distribution.

 Box-and-Whisker Plots
 Describing Data Using Statistics
 Mean, Median, and Mode
 Populations and Samples
 Reaction Time 1 (Graphs and Statistics)
 Real-Time Histogram
 Stem-and-Leaf Plots

S1.3.2: Describe characteristics of the normal distribution, including its shape and the relationships among its mean, median, and mode.

 Polling: City
 Populations and Samples
 Real-Time Histogram
 Sight vs. Sound Reactions

S1.3.3: Know and use the fact that about 68%, 95%, and 99.7% of the data lie within one, two, and three standard deviations of the mean, respectively in a normal distribution.

 Polling: City

S2: Students plot and interpret bivariate data by constructing scatterplots, recognizing linear and nonlinear patterns, and interpreting correlation coefficients; they fit and interpret regression models, using technology as appropriate.

S2.1: Scatterplots and Correlation

S2.1.2: Given a scatterplot, identify patterns, clusters, and outliers. Recognize no correlation, weak correlation, and strong correlation.

 Correlation
 Least-Squares Best Fit Lines
 Solving Using Trend Lines
 Trends in Scatter Plots

S2.1.3: Estimate and interpret Pearson?s correlation coefficient for a scatterplot of a bivariate data set. Recognize that correlation measures the strength of linear association.

 Correlation
 Least-Squares Best Fit Lines
 Solving Using Trend Lines
 Trends in Scatter Plots

S2.1.4: Differentiate between correlation and causation. Know that a strong correlation does not imply a cause-and-effect relationship. Recognize the role of lurking variables in correlation.

 Correlation

S2.2: Linear Regression

S2.2.1: For bivariate data that appear to form a linear pattern, find the least squares regression line by estimating visually and by calculating the equation of the regression line. Interpret the slope of the equation for a regression line.

 Correlation
 Least-Squares Best Fit Lines
 Solving Using Trend Lines

S2.2.2: Use the equation of the least squares regression line to make appropriate predictions.

 Correlation
 Least-Squares Best Fit Lines
 Solving Using Trend Lines

S3: Students understand and apply sampling and various sampling methods, examine surveys and experiments, identify bias in methods of conducting surveys, and learn strategies to minimize bias. They understand basic principles of good experimental design.

S3.1: Data Collection and Analysis

S3.1.1: Know the meanings of a sample from a population and a census of a population, and distinguish between sample statistics and population parameters.

 Polling: City

S3.1.2: Identify possible sources of bias in data collection and sampling methods and simple experiments; describe how such bias can be reduced and controlled by random sampling; explain the impact of such bias on conclusions made from analysis of the data; and know the effect of replication on the precision of estimates.

 Polling: Neighborhood
 Populations and Samples

S3.1.4: Design simple experiments or investigations to collect data to answer questions of interest; interpret and present results.

 Describing Data Using Statistics
 Polling: City
 Real-Time Histogram

S3.1.5: Understand methods of sampling, including random sampling, stratified sampling, and convenience samples, and be able to determine, in context, the advantages and disadvantages of each.

 Polling: City
 Polling: Neighborhood
 Populations and Samples

S3.1.6: Explain the importance of randomization, double-blind protocols, replication, and the placebo effect in designing experiments and interpreting the results of studies.

 Box-and-Whisker Plots
 Polling: City
 Polling: Neighborhood
 Populations and Samples

S4: Students understand probability and find probabilities in various situations, including those involving compound events, using diagrams, tables, geometric models and counting strategies; they apply the concepts of probability to make decisions.

S4.1: Probability

S4.1.1: Understand and construct sample spaces in simple situations.

 Independent and Dependent Events
 Theoretical and Experimental Probability

S4.1.2: Define mutually exclusive events, independent events, dependent events, compound events, complementary events and conditional probabilities; and use the definitions to compute probabilities.

 Binomial Probabilities
 Independent and Dependent Events
 Probability Simulations
 Theoretical and Experimental Probability

S4.1.3: Design and carry out an appropriate simulation using random digits to estimate answers to questions about probability; estimate probabilities using results of a simulation; compare results of simulations to theoretical probabilities.

 Geometric Probability
 Independent and Dependent Events
 Probability Simulations
 Theoretical and Experimental Probability

S4.2: Application and Representation

S4.2.1: Compute probabilities of events using tree diagrams, formulas for combinations and permutations, Venn diagrams, or other counting techniques.

 Binomial Probabilities
 Permutations and Combinations

S4.2.2: Apply probability concepts to practical situations, in such settings as finance, health, ecology, or epidemiology, to make informed decisions.

 Estimating Population Size
 Probability Simulations
 Theoretical and Experimental Probability

Correlation last revised: 5/17/2018

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.