9: Ninth Grade Science

9.2: Students will demonstrate knowledge understanding and applications of scientific facts, concepts, principles, theories, and models delineated in the objectives. demonstrate an understanding of the interrelationships among physics, chemistry, biology, earth/environmental science, and astronomy; and apply knowledge, understanding and skills of science subject matter/concepts to daily life.

9.2.1: apply principles of Mendelian genetics to solve heredity problems.

Chicken Genetics
Mouse Genetics (One Trait)
Mouse Genetics (Two Traits)

9.2.2: illustrate meiosis and mitosis and relate to chromosome number and production of sperm, egg and body cells.

Cell Division
Human Karyotyping

9.2.3: analyze cyclic changes in populations of organisms.

Food Chain
Forest Ecosystem
Prairie Ecosystem

9.2.4: design an environment that demonstrates the interdependence of plants and animals (e.g., energy and chemical cycles, adaptations of structures and behaviors).

Evolution: Mutation and Selection
Food Chain

9.2.5: compare and contrast the structure and function of cells, tissues and systems of different organisms.

Circulatory System

9.2.6: diagram the transfer of matter and energy in the chemical/molecular processes of photosynthesis, respiration and fermentation.

Energy Conversion in a System
Energy Conversions
Interdependence of Plants and Animals
Photosynthesis Lab
Pond Ecosystem

9.2.7: predict chemical and physical properties of an element using its position in the periodic table.

Electron Configuration

9.2.8: compare the types of radioactive decay in terms of particles and energy generated.

Nuclear Decay

9.2.9: predict the changes in density as mass and volume change.

Density Experiment: Slice and Dice
Density Laboratory
Density via Comparison
Determining Density via Water Displacement

9.2.10: relate molecular motion, kinetic energy and states of matter.

Energy Conversions
Inclined Plane - Sliding Objects
Phase Changes
Temperature and Particle Motion

9.2.11: write formulas and name compounds given oxidation numbers of monatomic and polyatomic ions.

Covalent Bonds
Dehydration Synthesis
Ionic Bonds
Stoichiometry

9.2.12: propose the results of changing the number of protons, neutrons or electrons on the properties of an atom.

Electron Configuration
Element Builder
Nuclear Decay

9.2.13: determine formulas and names for binary compounds.

Covalent Bonds
Dehydration Synthesis
Ionic Bonds
Stoichiometry

9.2.14: classify a binary chemical bond as ionic, nonpolar covalent or polar covalent.

Covalent Bonds
Ionic Bonds

9.2.15: given a chemical equation deduce the coefficients and classify the reaction type (e.g., synthesis or combination, decomposition, single replacement, or double replacement and combustion).

Balancing Chemical Equations
Chemical Equation Balancing
Dehydration Synthesis

9.2.16: assess and provide evidence to justify the occurrence of a chemical reaction (e.g., production of color, light, heat, sound, smell, gas, or precipitate).

Radiation

9.2.17: differentiate various forms of energy and energy transformations including fission and fusion.

Energy Conversion in a System
Energy Conversions
Inclined Plane - Sliding Objects

9.2.18: assess absorption and dissipation of heat by various materials.

Calorimetry Lab

9.2.20: construct electric circuits and mathematically model electric circuits using Ohm?s Law and power equations.

Advanced Circuits
Circuits
Determining a Spring Constant

9.2.21: establish the relationship between distance and the intensity of light, charge and gravitational attraction (e.g., inverse square law).

Charge Launcher
Gravitational Force
Gravity Pitch
Radiation

9.2.22: interpret and draw conclusions from speed-distance-time data and graphs.

Distance-Time Graphs
Distance-Time and Velocity-Time Graphs
Fan Cart Physics
Force and Fan Carts
Freefall Laboratory
Inclined Plane - Sliding Objects
Roller Coaster Physics

9.2.23: analyze experiments to determine which variables affect the motion of pendulums.

Simple Harmonic Motion

9.2.24: differentiate between transverse and longitudinal waves and model examples of each type (e.g., light, sound, or seismic).

Earthquake - Recording Station
Longitudinal Waves

9.2.25: predict weather based on the relationships of temperature, air pressure, wind speed, wind direction and humidity as depicted on a weather map and meteorological data.

Hurricane Motion
Weather Maps

9.2.26: analyze the relationships among latitude, altitude and climate.

Seasons Around the World
Seasons in 3D
Seasons: Earth, Moon, and Sun
Seasons: Why do we have them?

9.2.27: classify common rock forming minerals by examining their physical and chemical properties.

Mineral Identification

9.2.28: analyze the processes of the rock cycle to predict the paleo-environment in which a rock sample is formed.

Rock Cycle

9.2.31: interpret a half-life graph to determine the absolute age of a given sample.

Distance-Time Graphs
Force and Fan Carts
Half-life

9.2.32: compare and contrast theoretical models explaining forces driving lithospheric plate motion (e.g., slab pull, plate push, or convection).

Plate Tectonics

9.2.33: research and organize evidence to support the theory of plate tectonics.

Plate Tectonics

9.2.34: apply fusion, heat transfer, gravity, and electromagnetism to the sun, its evolution and its impact on earth.

Calorimetry Lab
Gravitational Force
Gravity Pitch
Orbital Motion - Kepler's Laws
Tides

PS: Physical Science

PS.2: Students will demonstrate knowledge understanding and applications of scientific facts, concepts, principles, theories, and models delineated in the objectives. demonstrate an understanding of the interrelationships among physics, chemistry, biology, earth/environmental science, and astronomy; and apply knowledge, understanding and skills of science subject matter/concepts to daily life.

PS.2.1: apply dimensional analysis and scientific notation in making metric calculations

Stoichiometry

PS.2.2: predict chemical and physical properties of an element using its position in the periodic table.

Electron Configuration

PS.2.4: relate molecular motion and the amount of kinetic energy to the temperature of a system.

Boyle's Law and Charles' Law
Collision Theory
Energy Conversions
Temperature and Particle Motion

PS.2.5: characterize compounds as ionic, nonpolar covalent or polar covalent and distinguish the difference between molecular and ionic structures

Electron Configuration
Ionic Bonds

PS.2.7: determine the coefficients and classify the reaction type of a chemical equation (e.g., synthesis or combination, decomposition, single replacement, or double replacement and combustion).

Balancing Chemical Equations
Chemical Equation Balancing
Dehydration Synthesis

PS.2.8: cite evidence for the occurrence of a chemical reaction from student generated experimental data (e.g., production of color, light, heat, sound, smell, gas, or precipitate).

Radiation

PS.2.9: qualitatively and quantitatively describe the law of conservation of mass/energy (e.g., mechanical, thermal, chemical, electrical and nuclear)

Energy Conversion in a System
Energy Conversions

PS.2.10: compare the types of particles liberated in nuclear decay and interpret half-life graphs (e.g., radiometric dating, nuclear medicine and nuclear waste disposal)

Distance-Time Graphs
Element Builder
Force and Fan Carts
Half-life

PS.2.11: experimentally demonstrate the relationship between heat and temperature (i.e., specific heat, melting point, latent heat)

Calorimetry Lab
Energy Conversion in a System
Energy Conversions
Phase Changes
Temperature and Particle Motion

PS.2.15: conduct experiments to verify the inverse square relationship between gravity, distance and intensity of light and sound

Gravitational Force
Gravity Pitch
Longitudinal Waves
Radiation
Sound Beats and Sine Waves

PS.2.16: experimentally obtain data and apply graphs, vectors and mathematical models to quantify Newton?s Laws of motion (i.e., velocity, acceleration, force, momentum, and time)

2D Collisions
Atwood Machine
Charge Launcher
Determining a Spring Constant
Force and Fan Carts
Inclined Plane - Simple Machine
Inclined Plane - Sliding Objects
Roller Coaster Physics
Uniform Circular Motion

PS.2.17: conduct an experiment to calculate the mechanical advantages, work in/out and efficiencies of simple machines

Ants on a Slant (Inclined Plane)
Inclined Plane - Simple Machine
Levers
Pulley Lab
Torque and Moment of Inertia
Wheel and Axle

PS.2.18: design, conduct and analyze experiments to determine variables affecting the period of pendulums.

Simple Harmonic Motion

PS.2.19: differentiate between transverse and longitudinal waves and model examples of each type and relate to water, light and sound waves

Earthquake - Recording Station
Longitudinal Waves

PS.2.20: examine seismographic and geologic evidence to determine structure, composition and age of the Earth

Earthquake - Determination of Epicenter
Plate Tectonics

PS.2.21: predict and present a weather forecast using a weather map and meteorological data

Hurricane Motion
Seasons Around the World
Seasons in 3D
Seasons: Earth, Moon, and Sun
Seasons: Why do we have them?
Weather Maps

PS.2.23: research and organize evidence to support the theory and effects of plate tectonics including density, force, mountain building, fossil and/or magnetic evidence

Charge Launcher
Density Experiment: Slice and Dice
Density Laboratory
Density via Comparison
Determining Density via Water Displacement
Force and Fan Carts
Human Evolution - Skull Analysis
Plate Tectonics

PS.2.24: apply fusion, heat transfer, gravity, and electromagnetism to the sun?s evolution and its impact on the solar system

Calorimetry Lab
Gravitational Force
Gravity Pitch
Orbital Motion - Kepler's Laws
Tides

PS.2.25: investigate theories for the origin and configuration of the solar system (e.g. nebular theory, Earth-Moon formation, heliocentric and geocentric models)

Moon Phases
Moonrise, Moonset, and Phases
Solar System Explorer
Tides

10: Tenth Grade Science

10.2: Students will demonstrate knowledge, understanding and applications of scientific facts, concepts, principles, theories and models as delineated in the objectives. demonstrate an understanding of the interrelationships among physics, chemistry, biology, earth/environmental science and astronomy. apply knowledge, understanding and skills of science subject matter/concepts to daily life experiences.

10.2.1: relate the structure of cell organelles to their functions.

Cell Structure
Paramecium Homeostasis

10.2.2: apply knowledge of cells to variations in cells, tissues, and organs of different organisms.

Microevolution

10.2.3: compare and contrast mechanisms for the movement of materials into and out of cells.

Osmosis

10.2.4: explore the discovery of DNA and its structure; examine nucleotide bonding to the importance of to the double helix structure.

Building DNA

10.2.5: apply DNA analysis to current societal and technological issues (e.g., DNA?s role in protein synthesis, heredity, cell division, or cellular functions).

Cell Division
Cell Structure
Paramecium Homeostasis

10.2.6: integrate DNA mutations, chromosomal crossing over and linkage with the principles of genetics.

Evolution: Mutation and Selection

10.2.8: compare traditional and modern classification systems.

Human Evolution - Skull Analysis

10.2.9: construct a scientific explanation for variation in the species and common ancestors using fossil records, homologous features and selective pressures.

Evolution: Mutation and Selection
Human Evolution - Skull Analysis
Microevolution

10.2.10: compare and contrast theories for the development, diversity and/or extinction of a species (e.g., natural selection, Lamarckism, or catastrophism).

Natural Selection

10.2.11: construct diagrams showing energy flow and cycles of matter between chemical and biological systems including photosynthesis, stored chemical energy, decomposition, carbon and nitrogen cycles.

Balancing Chemical Equations
Cell Energy Cycle
Interdependence of Plants and Animals
Photosynthesis Lab

10.2.12: integrate the human body systems to the functioning of the entire organism.

Circulatory System

10.2.13: design an investigation in which the needs of growing plants are determined.

Prairie Ecosystem

10.2.14: evaluate environmental factors that affect succession, populations and communities.

Food Chain
Forest Ecosystem
Prairie Ecosystem

10.2.15: model the flow of matter and energy flow through the respiration process.

Interdependence of Plants and Animals

10.2.16: compare and contrast by investigation the properties of solutions including density, conductivity, solubility, concentration, pH and colligative properties.

Colligative Properties
Density Experiment: Slice and Dice
Density Laboratory
Density via Comparison
Determining Density via Water Displacement
Freezing Point of Salt Water
Solubility and Temperature

10.2.17: compare and contrast the characteristics of physical, chemical and nuclear changes/reactions.

Freezing Point of Salt Water

10.2.18: determine the relationships among temperature, pressure and volume in gases and interpret graphs that depict these relationships (e.g., Charles? Law, Boyle?s Law, Gay-Lussac?s Law).

Boyle's Law and Charles' Law

10.2.20: compare and contrast the characteristics and uses of electromagnetic waves and relate the frequency of the wave to its application.

Sound Beats and Sine Waves

10.2.21: correlate the motion of a body to its Doppler shift.

Doppler Shift
Doppler Shift Advanced

10.2.23: qualitatively and quantitatively describe the conservation of energy (e.g., thermal, chemical, or mechanical).

Energy Conversion in a System

10.2.24: apply Newton?s Laws of Motion to depict the relationship among rate, force, momentum, work, and time using kinematics graph and mathematical models.

2D Collisions
Atwood Machine
Charge Launcher
Fan Cart Physics
Force and Fan Carts
Inclined Plane - Simple Machine
Uniform Circular Motion
Wheel and Axle

10.2.25: describe and quantify how machines can provide mechanical advantage.

Ants on a Slant (Inclined Plane)
Inclined Plane - Simple Machine
Levers
Pulley Lab
Torque and Moment of Inertia
Wheel and Axle

10.2.26: determine the effect of different forces on vibrating systems (e.g., pendulums, or springs).

Charge Launcher
Force and Fan Carts
Simple Harmonic Motion

10.2.28: predict the amplitude and frequency of tides using the concepts of gravity and positions of the earth-sun-moon (e.g., spring and neap tides).

Gravitational Force
Gravity Pitch
Orbital Motion - Kepler's Laws
Sound Beats and Sine Waves
Tides

10.2.29: evaluate the effects of geological events on weather and climate (e.g., volcanism and bolide impact).

Seasons Around the World
Seasons in 3D
Seasons: Earth, Moon, and Sun
Seasons: Why do we have them?

10.2.32: examine the effects of plate tectonics on geological and biological processes (e.g., rock cycle and paleo-geography).

Plate Tectonics

B: Biology

B.2: Students will demonstrate knowledge, understanding and applications of scientific facts, concepts, principles, theories, and models as delineated in the objectives; demonstrate an understanding of the interrelationships among physics, chemistry, biology and the earth and space sciences. apply knowledge, understanding and skills of science subject matter/concepts to daily life experiences.

B.2.2: relate the structure of cellular organelles to their functions and interactions in eukaryotic cells.

Cell Energy Cycle
Cell Structure
Paramecium Homeostasis

B.2.3: analyze the chemistry and fluid mosaic model of the cell membrane as it relates to import and export of molecules necessary for life including osmosis, diffusion, active and passive transport and dialysis.

Diffusion
Osmosis

B.2.4: compare and contrast cell types (e.g., prokaryotic/eukaryotic, plant/animal, nerve/muscle, archaea/bacteria).

Cell Structure

B.2.5: analyze the flow of energy through cellular processes such as photosynthesis, cellular respiration and fermentation.

Cell Energy Cycle
Food Chain
Interdependence of Plants and Animals
Photosynthesis Lab
Pond Ecosystem

B.2.6: outline mechanisms of homeostasis in living systems (negative and positive feedback).

Human Homeostasis
Paramecium Homeostasis

B.2.7: analyze meiosis and the cell cycle and relate the processes to the number of chromosomes and production of gametes and somatic cells.

Cell Division
Human Karyotyping

B.2.8: predict phenotypic ratios by applying Mendel?s Laws of Genetics (e.g., complete and incomplete dominance, codominance, sex-linked, crossing over).

Chicken Genetics
Hardy-Weinberg Equilibrium
Microevolution
Mouse Genetics (One Trait)
Mouse Genetics (Two Traits)

B.2.9: explore the discovery of DNA and examine the molecular structure of the double helix.

Building DNA

B.2.10: distinguish the structure and function of messenger, transfer and ribosomal RNA in the process of transcription and translation.

RNA and Protein Synthesis

B.2.12: evaluate the evidence for natural selection including speciation, fossil record evidence, molecular similarities and homologous structures.

Evolution: Mutation and Selection
Human Evolution - Skull Analysis

B.2.13: evaluate the influence of the historical social context on the development of evolutionary theory.

Human Evolution - Skull Analysis

B.2.15: interpret the placement of viruses in the current classification systems.

Virus Life Cycle (Lytic)

B.2.16: incorporate the structure and function of individual body systems to the overall functioning of the organism.

Circulatory System

B.2.17: assess responses of organisms to internal and environmental stimuli.

Human Homeostasis

B.2.18: evaluate environmental factors that affect succession, populations and communities.

Food Chain
Forest Ecosystem
Prairie Ecosystem
Rabbit Population by Season

B.2.19: propose ecosystem models that incorporate interactions of biotic and abiotic environmental variables (e.g., biogeochemical cycles).

Food Chain
Pond Ecosystem

B.2.20: diagram changes in energy as it flows through an ecosystem to illustrate conservation of energy (e.g., energy pyramid, food web, food chain).

Energy Conversion in a System
Food Chain
Forest Ecosystem
Prairie Ecosystem

B.2.21: characterize interrelationships of organisms within an ecosystem (e.g., symbiosis, competition, predation, mutualism, parasitism, commensalism).

Forest Ecosystem
Prairie Ecosystem

B.2.22: analyze graphs, GIS data and traditional maps reflecting changes in population to predict limiting factors in ecosystems as they determine carrying capacity.

Distance-Time Graphs
Food Chain
Force and Fan Carts
Forest Ecosystem
Prairie Ecosystem
Rabbit Population by Season

CB: Conceptual Biology

CB.2: Students will demonstrate knowledge, understanding and applications of scientific facts, concepts, principles, theories, and models as delineated in the objectives. demonstrate an understanding of the interrelationships among physics, chemistry, biology and the earth and space sciences. apply knowledge, understanding and skills of science subject matter/concepts to daily life experiences.

CB.2.2: relate the structure of cellular organelles to their functions and interactions in eukaryotic cells.

Cell Energy Cycle
Cell Structure
Paramecium Homeostasis

CB.2.3: correlate the properties of molecules to their movement through biological membranes (e.g., osmosis and diffusion).

Diffusion
Osmosis

CB.2.4: compare and contrast cell types (e.g., prokaryotic/eukaryotic, plant/animal).

Cell Structure

CB.2.5: analyze the flow of energy through cellular processes such as photosynthesis, cellular respiration and fermentation.

Cell Energy Cycle
Food Chain
Interdependence of Plants and Animals
Photosynthesis Lab
Pond Ecosystem

CB.2.6: apply the absorption spectrum of photosynthetic pigments to the action of spectrum of photosynthesis.

Bohr Model of Hydrogen
Bohr Model: Introduction
Cell Energy Cycle
Interdependence of Plants and Animals
Photosynthesis Lab

CB.2.7: analyze meiosis and the cell cycle and relate the processes to the number of chromosomes and production of gametes and somatic cells.

Cell Division
Human Karyotyping

CB.2.8: predict phenotypic ratios by applying Mendel?s Laws of Genetics (e.g., complete and incomplete dominance, codominance, sex-linked, and crossing over).

Chicken Genetics
Hardy-Weinberg Equilibrium
Microevolution
Mouse Genetics (One Trait)
Mouse Genetics (Two Traits)

CB.2.9: explore the discovery of DNA and examine the molecular structure of the double helix.

Building DNA

CB.2.12: evaluate the evidence of evolution through natural selection (e.g., speciation, fossil record evidence, molecular similarities and homologous structures.

Evolution: Mutation and Selection
Human Evolution - Skull Analysis
Natural Selection

CB.2.14: examine the life cycle of viruses and compare disease prevention (e.g., vaccinations, vector control and drug therapy).

Virus Life Cycle (Lytic)

CB.2.15: incorporate the structure and function of individual body systems to the overall functioning of the organism.

Circulatory System

CB.2.16: assess responses of organism to internal and environmental stimuli (e.g., homeostasis metabolism, and cyclic behaviors).

Human Homeostasis
Paramecium Homeostasis

CB.2.17: evaluate forest and wildlife best management practices as they affect succession, populations and communities.

Food Chain
Forest Ecosystem
Prairie Ecosystem

CB.2.18: assess the implications of the introduction of exotic species on native wildlife and their habitat requirements.

Food Chain
Forest Ecosystem
Prairie Ecosystem
Rabbit Population by Season

CB.2.19: diagram changes in energy as it flows through an ecosystem to illustrate conservation of energy, (e.g., energy pyramid, food web, food chain).

Energy Conversion in a System
Food Chain
Forest Ecosystem
Prairie Ecosystem

CB.2.20: characterize complex interactions of organism with ecosystems based on their niches including interspecific and intraspecific competition and symbiosis.

Forest Ecosystem
Interdependence of Plants and Animals
Prairie Ecosystem

CB.2.21: analyze graphs, GIS data and traditional maps reflecting changes in population to predict limiting factors in ecosystems as they determine carrying capacity.

Distance-Time Graphs
Food Chain
Force and Fan Carts
Forest Ecosystem
Prairie Ecosystem
Rabbit Population by Season

CB.2.22: predict the effects of human activities on biogeochemical cycles of matter and energy in the biosphere over time (e.g., water quality, air quality, recycling and global warming).

Greenhouse Effect
Water Pollution

BII: Biology 2

BII.2: Students will demonstrate knowledge, understanding and applications of scientific facts, concepts, principles, theories, and models as delineated in the objectives; demonstrate an understanding of the interrelationships among physics, chemistry, biology and the earth and space sciences. apply knowledge, understanding and skills of science subject matter/concepts to daily life experiences.

BII.2.1: correlate functional groups to unique properties of organic molecules to biochemical pathways.

Dehydration Synthesis

BII.2.2: describe the transfer of energy during condensation and hydrolysis reactions of organic molecules (e.g., ATP, enzyme substrate and active site).

Dehydration Synthesis

BII.2.3: summarize the electrochemical gradients in various cells and their corresponding environments.

Cell Structure
Paramecium Homeostasis

BII.2.5: examine the flow of energy through specific molecules in light dependent and light independent photosynthesis reactions, glycolysis, Kreb?s cycle, EPS, and fermentation.

Cell Energy Cycle
Food Chain
Interdependence of Plants and Animals
Photosynthesis Lab

BII.2.6: interpret important research leading to the current knowledge of molecular genetics (e.g., Griffith, Avery, Hershey & Chase, Chargaff, Franklin & Wilkins and Waston & Crick).

Chicken Genetics

BII.2.9: analyze the process of DNA replication including DNA polymerase, semi-conservative replication and base-pairing.

Building DNA
RNA and Protein Synthesis

BII.2.11: demonstrate the role of DNA in determining phenotype and illustrate ways of controlling and regulating expression and function of genes.

DNA Fingerprint Analysis
Human Karyotyping
Microevolution

BII.2.12: distinguish between chromosomal and gene mutations and their potential effects.

Evolution: Mutation and Selection

BII.2.13: analyze a karyotype to determine chromosomal abnormalities.

Human Karyotyping

BII.2.14: predict phenotypic ratios of crosses involving pleiotropy, epistasis, multiple alleles and polygenic inheritance.

Chicken Genetics
Evolution: Mutation and Selection
Microevolution
Mouse Genetics (One Trait)
Mouse Genetics (Two Traits)
Natural Selection

BII.2.16: analyze the criteria for classifications of protists (e.g., motility, cellular structures, reproduction, energy sources).

Cell Structure

BII.2.17: survey the fungi kingdom (e.g., characteristics, reproduction, relationship to humans and the ecosystem).

Prairie Ecosystem

BII.2.18: compare and contrast members of the plant kingdom in terms of their reproductive systems.

Pollination: Flower to Fruit

BII.2.21: examine types of innate and learned animal behaviors (e.g., competitive, reproductive, social, cyclic, and communication).

Prairie Ecosystem

C: Chemistry

C.2: Students will demonstrate knowledge, understanding and applications of scientific facts, concepts, principles, theories and models as delineated in the objectives. demonstrate an understanding of the interrelationships among physics, chemistry, biology, earth/environmental science and astronomy. apply knowledge, understanding and skills of science subject matter/concepts to daily life experiences.

C.2.2: research and evaluate the contributions of Dalton, Bohr, Heisenberg, and Schrödinger to the evolution of the atomic theory.

Bohr Model of Hydrogen
Bohr Model: Introduction

C.2.3: determine the proper set of quantum numbers (n, l, ml, and ms) for any electron in any given element.

Bohr Model of Hydrogen
Bohr Model: Introduction
Electron Configuration
Element Builder

C.2.4: produce electron configurations and orbital diagrams for any element on the periodic table and predict the chemical properties of the element from the electron configuration.

Electron Configuration

C.2.5: illustrate Lewis? dot structures for representative (main group) elements.

Electron Configuration
Element Builder

C.2.6: generate the correct formula and/or name for ionic and molecular compounds.

Covalent Bonds
Ionic Bonds
Stoichiometry

C.2.7: analyze periodic trends in atomic size, ionic size, electronegativity, ionization energy and electron affinity.

Electron Configuration
Ionic Bonds

C.2.9: construct models to explain the structure and geometry of organic and inorganic molecules.

Dehydration Synthesis

C.2.10: given the reactants, anticipate the products and create balanced equations for the five general types of chemical reactions (e.g., synthesis or combination, decomposition, single replacement, or double replacement and combustion).

Balancing Chemical Equations
Chemical Equation Balancing
Covalent Bonds
Dehydration Synthesis
Ionic Bonds

C.2.11: determine experimentally the effects of temperature and concentration on solution properties (e.g., solubility, conductivity, density and colligative properties).

Colligative Properties
Collision Theory
Freezing Point of Salt Water

C.2.16: compare and contrast the Arrhenius and Bronsted-Lowry definitions of acids and bases.

pH Analysis
pH Analysis: Quad Color Indicator

C.2.17: compare methods of measuring pH (e.g., indicators, indicator papers, or pH meters).

pH Analysis
pH Analysis: Quad Color Indicator

CC: Conceptual Chemistry

CC.2: Students will demonstrate knowledge, understanding and applications of scientific facts, concepts, principles, theories and models as delineated in the objectives. demonstrate an understanding of the interrelationships among physics, chemistry, biology, earth/environmental science and astronomy. apply knowledge, understanding and skills of science subject matter/concepts to daily life experiences.

CC.2.3: compare and contrast the properties of metals, nonmetals and metalloids.

Electron Configuration
Element Builder

CC.2.4: use the kinetic molecular theory to explain states of matter.

Temperature and Particle Motion

CC.2.6: produce and use electron configuration to explain chemical properties of elements.

Electron Configuration

CC.2.7: generate the correct formula and/or name for ionic and molecular compounds.

Covalent Bonds
Ionic Bonds
Stoichiometry

CC.2.8: predict the type of bonding that occurs between atoms and characterize the properties of the ionic, covalent or metallic bond formed.

Covalent Bonds
Dehydration Synthesis
Ionic Bonds

CC.2.9: given the reactants, anticipate the products and create balanced equations for the five general types of chemical reactions (e.g., synthesis or combination, decomposition, single replacement, or double replacement and combustion).

Balancing Chemical Equations
Chemical Equation Balancing
Covalent Bonds
Dehydration Synthesis
Ionic Bonds

CC.2.10: analyze the periodic table to predict trends in atomic size, ionic size, electronegativity, ionization energy and electron affinity

Electron Configuration
Ionic Bonds

CC.2.11: illustrate Lewis? dot structures for representative (main group) elements.

Electron Configuration
Element Builder

CC.2.13: perform the following ?mole? calculations:

CC.2.13.d: formulas of hydrates

Stoichiometry

CC.2.13.e: theoretical yields.

Stoichiometry

CC.2.14: construct models to explain the structure and geometry of organic and inorganic molecules and the lattice structures of crystals.

Bohr Model of Hydrogen
Bohr Model: Introduction
Electron Configuration

CC.2.15: determine experimentally the effects of temperature and concentration on solution properties (e.g., solubility, conductivity, or density and colligative properties).

Colligative Properties
Collision Theory
Freezing Point of Salt Water

CC.2.16: compare methods of measuring pH (e.g., indicators, indicator papers, or pH meters).

pH Analysis
pH Analysis: Quad Color Indicator

CC.2.18: compare and contrast the Arrhenius and Bronsted-Lowry definitions of acids and bases.

pH Analysis
pH Analysis: Quad Color Indicator

CC.2.20: given the reactants, anticipate the products and create balanced equations for nuclear reactions.

Nuclear Decay

CII: Chemistry II

CII.2: Students will demonstrate knowledge, understanding and applications of scientific facts, concepts, principles, theories and models as delineated in the objectives. demonstrate an understanding of the interrelationships among physics, chemistry, biology, earth/environmental sciences and astronomy. apply knowledge, understanding and skills of science subject matter/concepts to daily life experiences.

CII.2.1: identify types of binding forces such as: ionic, covalent, metallic, and van der Waals forces (including London) and relate binding forces to state, structure, and properties of matter.

Covalent Bonds
Dehydration Synthesis
Ionic Bonds
Phase Changes

CII.2.2: investigate the valence bond including the concepts of hybridization of orbitals, resonance, and formation of sigma and pi bonds and demonstrate an understanding of the VSEPR theory.

Charge Launcher
Coulomb Force (Static)
Covalent Bonds
Electron Configuration
Ionic Bonds
Pith Ball Lab

CII.2.4: relate Avogadro?s hypothesis and its relation to the mole concept.

Stoichiometry

CII.2.5: define changes of state, including critical temperatures and triple points, based on the kinetic molecular theory.

Collision Theory
Freezing Point of Salt Water
Temperature and Particle Motion

CII.2.6: calculate concentration and explain the effect of changing concentration on the colligative properties of solutions.

Colligative Properties
Freezing Point of Salt Water

CII.2.7: identify oxidation numbers for ions and for any element in a compound to calculate the electron movement in a redox reaction and calculate the voltage using the Nernst equation.

Bohr Model of Hydrogen
Covalent Bonds
Electron Configuration
Element Builder
Ionic Bonds

CII.2.9: use experimental data and graphical analysis to determine reactant order, rate constants, and reaction rate laws, calculate the rate of reaction and explain the effect of temperature on rate changes.

Collision Theory
Force and Fan Carts

CII.2.13: calculate molar masses from gas density, freezing-point, and boiling-point measurements.

Freezing Point of Salt Water

CII.2.14: identify weak electrolytes; define pH, pOH, pK, Ka, Kb, Kw, ionization constant, percent ionization, Ksp; calculate pH and pOH; measure pH with indicator papers and electronic meters; recognize salts that undergo hydrolysis and write a reaction for the ion with water and interpret a titration curve to identify the equivalence point don?t forget buffers.

Balancing Chemical Equations
Chemical Equation Balancing
Solubility and Temperature
Stoichiometry
pH Analysis: Quad Color Indicator

CII.2.15: perform stoichiometric calculations to produce values for theoretical yield and to decide the limiting reactant of a given chemical reaction.

Limiting Reactants
Stoichiometry

ES.2: Students will demonstrate knowledge, understanding and applications of scientific facts, concepts, principles, theories and models as delineated in the objectives. demonstrate an understanding of the interrelationships among physics, chemistry, biology, earth/environmental science and astronomy. apply knowledge, understanding and skills of science subject matter/concepts to daily life experiences.

ES.2.2: analyze seismic, density, gravity, and magnetic data to explain the structure of the earth.

Density Experiment: Slice and Dice
Density Laboratory
Density via Comparison
Determining Density via Water Displacement

ES.2.4: analyze radiometric dating and rock and fossil evidence to determine the age of substances.

Human Evolution - Skull Analysis

ES.2.5: use chemical and physical properties to distinguish between common minerals and explain their economic uses.

Mineral Identification

ES.2.9: predict geologic activity associated with specific plate boundaries and interactions.

Plate Tectonics

ES.2.10: analyze modern and historical seismic information to determine epicenter location and magnitude of earthquakes.

Earthquake - Determination of Epicenter
Earthquake - Recording Station
Plate Tectonics

ES.2.11: evaluate current explanations for mechanisms, which drive the motion of plates (convection, slab-pull, plate push).

Plate Tectonics

ES.2.12: relate the effect of degradation and tectonic forces on the earth?s surface features, i.e.,

ES.2.12.a: weathering,

Plate Tectonics

ES.2.12.b: physical features of the ocean floor,

Plate Tectonics

ES.2.12.c: life with the oceans.

Plate Tectonics

ES.2.13: construct and/or interpret information on topographic maps.

Building Topographical Maps
Reading Topographical Maps

ES.2.15: compare and contrast characteristics of the various oceans, including their lateral and vertical motions.

Tides

ES.2.16: analyze the evolution of the ocean floor including ocean crust, sedimentation, active and passive continental margins.

Plate Tectonics

ES.2.18: investigate to explain heat transfer in the atmosphere and its relationship to meteorological processes (e.g., pressure, winds, evaporation, condensation, or precipitation).

Conduction and Convection
Heat Transfer by Conduction
Hurricane Motion

ES.2.20: use meteorological evidence and weather maps (including air masses, wind, barometric pressure, and temperature data) to forecast weather.

Hurricane Motion
Weather Maps

ES.2.21: examine global change over time, i.e.,

ES.2.21.b: global warming,

Greenhouse Effect

ES.2.22: apply Newton?s Law of Universal Gravitation to the motion of celestial objects to explain phenomenon observed in the sun-earth-moon system.

Tides

ES.2.23: analyze several origin theories of the solar system and universe and use them to explain the celestial bodies and their movements.

Solar System Explorer

ES.2.27: evaluate the potential conflicts, which arise between societal reliance on natural resources and the need to act as responsible stewards to reclaim the earth, including disposal of hazardous and non-hazardous waste.

Water Pollution

ES.2.28: research alternative energy sources and evaluate the ecological, environmental and economic cost-benefit ratio.

Energy Conversions

P: Physics

P.2: Students will demonstrate knowledge, understanding, and applications of scientific facts, concepts, principles, theories, and models as delineated in the objectives. demonstrate an understanding of the interrelationships among physics, chemistry, biology, and the earth and space sciences. apply knowledge, understanding, and skills of science subject matter/concepts to daily life experiences.

P.2.1: construct and interpret graphs of position versus time, velocity versus time and acceleration versus time.

Atwood Machine
Distance-Time Graphs
Distance-Time and Velocity-Time Graphs
Fan Cart Physics
Freefall Laboratory
Inclined Plane - Sliding Objects
Roller Coaster Physics
Uniform Circular Motion

P.2.3: develop solutions for multi-step problems involving velocity, acceleration, momentum and net force.

2D Collisions
Atwood Machine
Fan Cart Physics
Force and Fan Carts
Freefall Laboratory
Inclined Plane - Simple Machine
Inclined Plane - Sliding Objects
Roller Coaster Physics
Uniform Circular Motion

P.2.4: interpret graphical, algebraic and/or trigonometric solutions to prove the values for vector components and resultants.

2D Collisions
Atwood Machine
Fan Cart Physics
Force and Fan Carts
Freefall Laboratory
Inclined Plane - Simple Machine
Inclined Plane - Sliding Objects
Roller Coaster Physics
Uniform Circular Motion

P.2.5: justify Newton?s Laws of Motion in terms of equilibrium and net force situations.

2D Collisions
Atwood Machine
Fan Cart Physics
Force and Fan Carts

P.2.6: evaluate the conservation of energy and momentum and deduce solutions for elastic and inelastic collisions.

2D Collisions
Air Track

P.2.7: assess the magnitude of buoyant force on submerged and floating objects.

Archimedes' Principle
Density via Comparison
Force and Fan Carts

P.2.10: examine the reflective, refractive and diffractive properties of mechanical and transverse waves.

Basic Prism
Laser Reflection
Ray Tracing (Lenses)
Refraction

P.2.11: perform calculations to determine wavelength, frequency, velocity or energy of a wave.

Earthquake - Determination of Epicenter
Longitudinal Waves
Photoelectric Effect
Refraction
Sound Beats and Sine Waves

P.2.13: research applications of Doppler shift in determining an approaching or receding source in wave propagation.

Doppler Shift
Doppler Shift Advanced

P.2.14: apply ray optics diagrams to lenses and mirrors; use the lens/mirror equation and the magnification equation to solve optics problems.

Ray Tracing (Lenses)
Ray Tracing (Mirrors)

P.2.15: justify the image results obtained by diagramming the ray optics of lenses and mirrors and/or by deducing the image information from the lens/mirror equation.

Laser Reflection
Ray Tracing (Lenses)
Ray Tracing (Mirrors)

P.2.16: construct and analyze electrical circuits and calculate Ohm?s law problems for series and parallel circuits.

Advanced Circuits
Circuits

P.2.18: analyze the motion of a projectile.

Golf Range!

CP.2: Students will demonstrate knowledge, understanding and applications of scientific facts, concepts, principles, theories and models as delineated in the objectives. demonstrate an understanding of the interrelationships among physics, chemistry, biology, earth/environmental science and astronomy. apply knowledge, understanding and skills of science subject matter/concepts to daily life\experiences.

CP.2.2: compare and contrast distance, velocity and acceleration of moving objects to describe accelerated and non-accelerated motions of a particle from textbook or lab collected data.

Distance-Time Graphs
Distance-Time and Velocity-Time Graphs
Fan Cart Physics
Force and Fan Carts
Freefall Laboratory
Inclined Plane - Sliding Objects
Roller Coaster Physics
Temperature and Particle Motion
Uniform Circular Motion

CP.2.3: analyze the motion of a projectile.

Golf Range!

CP.2.4: illustrate forces acting on objects with free body diagrams.

Charge Launcher
Force and Fan Carts
Inclined Plane - Simple Machine

CP.2.5: interpret Newton?s Laws in terms of natural phenomena.

2D Collisions
Atwood Machine
Fan Cart Physics
Force and Fan Carts
Uniform Circular Motion

CP.2.6: compare and contrast kinetic and potential energies and recognize situations where mechanical energy is conserved.

Energy Conversion in a System
Energy Conversions
Energy of a Pendulum
Inclined Plane - Rolling Objects
Inclined Plane - Simple Machine
Inclined Plane - Sliding Objects
Period of a Pendulum
Roller Coaster Physics
Simple Harmonic Motion

CP.2.7: deduce work, energy, power and efficiency in mechanical systems.

Inclined Plane - Simple Machine

CP.2.8: analyze Archimedes? and Pascal?s principles to solve problems involving equilibrium and stability of floating systems.

Density Laboratory
Determining Density via Water Displacement

CP.2.10: compare and contrast the common temperature scales, convert from one temperature scale to another and evaluate temperature in terms of kinetic energy.

Energy Conversions
Temperature and Particle Motion

CP.2.11: apply the mechanism of heat transfer and relate to environmental and energy conservation issues.

Calorimetry Lab

CP.2.13: compare and contrast sound and light waves using the concepts of reflection, refraction, and interference.

Heat Absorption
Laser Reflection
Longitudinal Waves
Ray Tracing (Lenses)

CP.2.14: solve problems involving wave speed, frequency and wavelength; determine factors that affect the speed of sound; recognize that the speed of light is a constant.

Basic Prism
Earthquake - Determination of Epicenter
Refraction

CP.2.16: compare the Doppler shift effect for sound and light and point out examples of its occurrences and applications.

Doppler Shift Advanced
Longitudinal Waves
Sound Beats and Sine Waves

CP.2.17: diagram image location involving plane and spherical mirrors, concave and convex lenses.

Ray Tracing (Lenses)
Ray Tracing (Mirrors)

CP.2.18: illustrate the applications of colored lights and pigments.

Basic Prism
Color Absorption

CP.2.20: analyze simple direct current circuits using Ohm?s Law.

Advanced Circuits
Circuits

PII.2: Students will demonstrate knowledge, understanding, and applications of scientific facts, concepts, principles, theories, and models as delineated in the objectives. demonstrate an understanding of the interrelationships among physics, chemistry, biology, and the earth and space sciences. apply knowledge, understanding, and skills of science subject matter/concepts to daily life experiences.

PII.2.1: apply graphical analysis to interpret motion in terms of position, velocity, acceleration, and time.

Atwood Machine
Distance-Time Graphs
Distance-Time and Velocity-Time Graphs
Fan Cart Physics
Freefall Laboratory
Inclined Plane - Sliding Objects
Roller Coaster Physics
Uniform Circular Motion

PII.2.3: experimentally verify laws of motion including Newton?s Laws, Conservation of Momentum (linear and angular), and Conservation of Energy.

2D Collisions
Air Track
Atwood Machine
Fan Cart Physics
Force and Fan Carts
Uniform Circular Motion

PII.2.4: using knowledge of linear motion equations, synthesize concepts of rotational motion (e.g., angular speed and acceleration, centripetal acceleration, Newtonian gravitation, Kepler?s Laws, torque).

Inclined Plane - Sliding Objects
Torque and Moment of Inertia

PII.2.6: interpret and apply concepts of thermal physics (e.g., distinction of heat and temperature, thermal expansion, properties of Ideal Gases, Kinetic Theory, specific heat, and energy transfer).

Boyle's Law and Charles' Law
Calorimetry Lab
Collision Theory
Energy Conversion in a System
Energy Conversions
Temperature and Particle Motion

PII.2.7: deduce the relative values of electric force and field strength based on the magnitude of and the distance from the point charge (e.g., Coulomb?s Law and inverse square law).

Coulomb Force (Static)
Force and Fan Carts
Gravitational Force

PII.2.8: construct, diagram and evaluate complex electrical circuits.

Advanced Circuits
Circuits

PII.2.10: critique electromagnetic induction and evaluate its application to electric circuits and various devices.

Advanced Circuits
Circuits

PII.2.12: apply knowledge of simple harmonic motion (e.g., springs, pendulums and other oscillating objects) to calculate the kinetic and potential energies of the oscillating system.

Energy Conversions
Energy of a Pendulum
Inclined Plane - Rolling Objects
Inclined Plane - Simple Machine
Period of Mass on a Spring
Period of a Pendulum
Potential Energy on Shelves
Simple Harmonic Motion

PII.2.13: examine wave properties and their interactions (e.g., reflection, refraction, dispersion, total internal deflection, interference, diffraction, Doppler Shift, beats, and polarization).

Basic Prism
Doppler Shift
Doppler Shift Advanced
Laser Reflection
Longitudinal Waves
Ray Tracing (Lenses)
Refraction

PII.2.14: evaluate the application of wave properties to the development of optical and acoustical devices.

Earthquake - Determination of Epicenter
Sound Beats and Sine Waves

PII.2.16: examine evidence for the historical development of the quantum mechanical theory (e.g., Planck?s blackbody radiation, Einstein?s photoelectric effect, deBroglie?s duality).

Photoelectric Effect

PII.2.17: calculate an atom?s binding energy as related to Einstein?s special theory of relativity, and interpret the nuclear forces present.

Nuclear Decay

PII.2.18: differentiate between stable and unstable nuclei, and if the nucleus is unstable predict the type(s) of nuclear decay.

Half-life
Nuclear Decay

Correlation last revised: 3/29/2010

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.