SCI10-CD: Climate and Ecosystem Dynamics

SCI10-CD1: Assess the implications of human actions on the local and global climate and the sustainability of ecosystems.

SCI10-CD1.a: Pose questions or problems relating to the effects of human actions on global climate change and the sustainability of ecosystems that arise from personal research.

Coral Reefs 2 - Biotic Factors

SCI10-CD1.h: Provide examples of human actions that have contributed to the anthropogenic greenhouse effect.

Carbon Cycle
Greenhouse Effect - Metric

SCI10-CD2: Investigate factors that influence Earth's climate system, including the role of the natural greenhouse effect.

SCI10-CD2.e: Explain how greenhouse gases (e.g., water vapour, carbon dioxide, methane, nitrous oxide, sulphur dioxide and ozone), particles, clouds and surface albedo affect the amount of solar energy absorbed and re-radiated at various locations on Earth.

Greenhouse Effect - Metric

SCI10-CD2.j: Analyze weather and atmospheric data to identify patterns in temperature and atmospheric pressure, and changes in those patterns locally, regionally and globally.

Weather Maps - Metric

SCI10-CD3: Examine biodiversity through the analysis of interactions among populations within communities.

SCI10-CD3.a: Discuss the importance of biodiversity and maintaining biodiversity.

Coral Reefs 1 - Abiotic Factors
Coral Reefs 2 - Biotic Factors

SCI10-CD3.b: Understand that scientists describe biomes as resulting from the interaction of biotic and abiotic factors such as temperature, precipitation, insolation, latitude, altitude and geography.

Pond Ecosystem

SCI10-CD3.e: Determine the population density, percentage frequency and/or percentage cover of one or more organisms in an ecosystem using primary or secondary population data.

Food Chain

SCI10-CD3.h: Construct and/or interpret graphs of population dynamics of humans and other species to determine population trends within an ecosystem.

Food Chain
Rabbit Population by Season

SCI10-CD3.i: Investigate various ways in which natural populations attempt to maintain equilibrium, and relate this equilibrium to the resource limits of an ecosystem with reference to concepts such as carrying capacity, natality, mortality, immigration and emigration.

Food Chain
Rabbit Population by Season

SCI10-CD3.k: Examine how factors such as invasive species, habitat loss and climate change affect biodiversity within an ecosystem, and can result in species becoming at-risk (i.e., vulnerable, threatened and extirpated).

Coral Reefs 1 - Abiotic Factors
Coral Reefs 2 - Biotic Factors

SCI10-CD3.l: Analyze how the bioaccumulation and biomagnification of human-made substances can affect the viability and biodiversity of organisms and populations in an ecosystem.

Pond Ecosystem

SCI10-CD4: Investigate the role of feedback mechanisms in biogeochemical cycles and in maintaining stability in ecosystems.

SCI10-CD4.a: Explain systems in terms of their type (e.g., open, closed and isolated), equilibrium (e.g., dynamic, static, stable and unstable) and their associated feedbacks (e.g., positive and negative).

Carbon Cycle
Cell Energy Cycle

SCI10-CD4.d: Describe how human actions can affect the cycling of matter and flow of energy through ecosystems.

Carbon Cycle
Pond Ecosystem

SCI10-CD4.e: Examine the role of photosynthesis, respiration and sinks in the cycling of carbon through the environment.

Carbon Cycle
Cell Energy Cycle
Photosynthesis Lab

SCI10-CD4.f: Design and carry out an investigation to determine the effect of carbon dioxide levels on photosynthesis and/or to determine the effect of nitrogenous-based fertilizer on plant or algal growth.

Photosynthesis Lab

SCI10-CR: Chemical Reactions

SCI10-CR1: Explore the properties of chemical reactions, including the role of energy changes, and applications of acids and bases.

SCI10-CR1.c: Observe and describe a variety of chemical reactions, including synthesis, decomposition, combustion, single replacement and double replacement.

Equilibrium and Concentration
Titration

SCI10-CR1.g: Investigate the properties of endothermic and exothermic chemical reactions, including identifying where or how energy is absorbed or released in the reaction and identifying potential benefits and consequences of the reaction.

Chemical Changes

SCI10-CR2: Name and write formulas for common ionic and molecular chemical compounds, including acids and bases.

SCI10-CR2.a: Examine the relationship between an element's position on the periodic table, the number of its valence electrons and its chemical properties.

Electron Configuration

SCI10-CR2.b: Discuss the importance of valence electrons, and whether they are shared or transferred, in determining bond type in chemical compounds.

Covalent Bonds
Electron Configuration
Ionic Bonds

SCI10-CR2.c: Name and write formulas for common ionic compounds, including compounds involving polyatomic ions, using the periodic table and a list of common ions.

Ionic Bonds

SCI10-CR2.g: Name and write formulas for common molecular and organic compounds (e.g., methane, propane, butane, octane, methanol, ethanol and glucose), using the periodic table and a list of numerical Greek prefixes.

Chemical Equations

SCI10-CR2.j: Investigate how certain substances, including those traditional to First Nations and Métis cultures, can serve as acid-base indicators.

Chemical Changes
Identifying Nutrients
Mystery Powder Analysis
Titration
pH Analysis
pH Analysis: Quad Color Indicator

SCI10-CR2.k: Describe how the pH scale is used to classify substances as acidic, basic or neutral.

pH Analysis
pH Analysis: Quad Color Indicator

SCI10-CR3: Represent chemical reactions and conservation of mass symbolically using models, word and skeleton equations and balanced chemical equations.

SCI10-CR3.b: Explain the importance of the concept of conservation of mass in understanding, interpreting and predicting results of chemical reactions.

Chemical Changes

SCI10-CR3.c: Represent chemical reactions, organic compounds and conservation of mass using models and word equations.

Chemical Equations
Equilibrium and Concentration

SCI10-CR3.d: Represent chemical reactions and conservation of mass using skeleton equations and balanced equations.

Balancing Chemical Equations
Chemical Equations

SCI10-CR3.e: Translate word equations to balanced chemical equations and balanced chemical equations to word equations.

Chemical Equations

SCI10-CR3.g: Categorize chemical reactions as synthesis, decomposition, combustion, single replacement and double replacement, including acid base neutralization.

Balancing Chemical Equations
Chemical Equations
Dehydration Synthesis
Equilibrium and Concentration
Titration

SCI10-CR3.h: Verify whether a chemical equation is correctly balanced, and correct any errors.

Balancing Chemical Equations
Chemical Equations

SCI10-CR3.i: Discuss the value of representing chemical reactions using models, word and skeleton equations and balanced chemical equations.

Balancing Chemical Equations
Chemical Changes
Chemical Equations
Equilibrium and Concentration

SCI10-CR4: Investigate the rates of chemical reactions, including factors that affect the rate.

SCI10-CR4.a: Provide examples of chemical reactions that occur over a range of time scales.

Collision Theory

SCI10-CR4.b: Predict how factors such as temperature of the reactant(s), concentration of the reactant(s), surface area of the reactant(s) and the presence or absence of catalysts or inhibitors might affect the rate of a chemical reaction.

Collision Theory

SCI10-CR4.c: Formulate scientific questions about the rates of chemical reactions and the factors that affect rates of chemical reactions.

Collision Theory

SCI10-CR4.d: Design and perform an experiment to determine how various factors affect chemical reaction rates, including identifying and controlling major variables.

Collision Theory

SCI10-CR4.g: Reflect upon data collection and analysis procedures, and suggest improvements to increase precision and accuracy.

Temperature and Sex Determination - Metric

SCI10-CR4.h: Use the collision model to explain differences in chemical reaction rates.

Collision Theory

SCI10-CR4.i: Value the processes for drawing conclusions in science.

Effect of Environment on New Life Form
Pendulum Clock

SCI10-FM: Force and Motion in Our World

SCI10-FM1: Explore the development of motion-related technologies and their impacts on self and society.

SCI10-FM1.a: Create a representation of different types of motion and motion-related technologies from various cultures, including First Nations and Métis.

Roller Coaster Physics

SCI10-FM1.b: Describe how motion that may appear imperceptible to humans (e.g., continental drift, subatomic particles, light, blood circulating and galaxies) can be measured using appropriate technologies.

Distance-Time Graphs - Metric
Free-Fall Laboratory

SCI10-FM1.e: Evaluate the design and function of a motion-related technology using student-identified criteria such as safety, cost, availability and impact on everyday life and the environment.

Trebuchet

SCI10-FM2: Investigate and represent the motion of objects that travel at a constant speed in a straight line.

SCI10-FM2.f: Construct and analyze graphs (i.e., distance-time, position-time, speed-time and velocity-time) using student-collected data obtained from objects undergoing uniform motion or through computer simulations.

Distance-Time and Velocity-Time Graphs - Metric

SCI10-FM2.h: Derive the relationship between speed, distance and time (i.e., v = (delta d)/(delta t)) and between velocity, displacement and time (i.e., vector v = (delta d)/(delta t)) using student-collected data from objects undergoing uniform motion.

Feed the Monkey (Projectile Motion)
Free-Fall Laboratory
Golf Range

SCI10-FM3: Investigate and represent the motion of objects that undergo acceleration.

SCI10-FM3.c: Apply the concept of 'rate of change' to operationally define speed, velocity and acceleration.

Feed the Monkey (Projectile Motion)
Free-Fall Laboratory
Golf Range

SCI10-FM3.e: Differentiate between the concepts of instantaneous and average as they relate to speed and velocity.

Distance-Time and Velocity-Time Graphs - Metric

SCI10-FM3.f: Construct and analyze graphs (i.e., distance-time, position-time, speed-time and velocity-time) that represent the motion of objects that undergo acceleration.

Atwood Machine
Distance-Time and Velocity-Time Graphs - Metric
Free-Fall Laboratory

SCI10-FM3.g: Solve problems related to acceleration using the equations of motion (e.g., vector a = (delta vector v)/(delta t)’, delta vector d = (vector v sub 1)(t) + 1/2(vector a)(delta t²)).

Atwood Machine
Free-Fall Laboratory

SCI10-FM4: Explore the relationship between force and motion for objects moving in one and two dimensions.

SCI10-FM4.b: Investigate the effects of applying constant forces to objects at rest and to objects moving at a constant velocity in a straight line.

Fan Cart Physics

SCI10-FM4.d: Demonstrate the role of friction in changing the position and/or motion of an object.

Free-Fall Laboratory
Inclined Plane - Sliding Objects

SCI10-FM4.f: Analyze student-collected data to verify the relationship between the acceleration of an object and the net force acting on it.

Free-Fall Laboratory

Correlation last revised: 3/30/2021

This correlation lists the recommended Gizmos for this province's curriculum standards. Click any Gizmo title below for more information.