5.1: Characteristics and Interactions of Earth’s Systems

5.1.2: Use mathematics and computational thinking to compare the quantity of saltwater and freshwater in various reservoirs to provide evidence for the distribution of water on Earth. Emphasize reservoirs such as oceans, lakes, rivers, glaciers, groundwater, and polar ice caps. Examples of using mathematics and computational thinking could include measuring, estimating, graphing, or finding percentages of quantities.

Water Cycle

5.1.3: Ask questions to plan and carry out investigations that provide evidence for the effects of weathering and the rate of erosion on the geosphere. Emphasize weathering and erosion by water, ice, wind, gravity, or vegetation. Examples could include observing the effects of cycles of freezing and thawing of water on rock or changing the slope in the downhill movement of water.

Erosion Rates
River Erosion
Weathering

5.1.4: Develop a model to describe interactions between Earth’s systems including the geosphere, biosphere, hydrosphere, and/or atmosphere. Emphasize interactions between only two systems at a time. Examples could include the influence of a rainstorm in a desert, waves on a shoreline, or mountains on clouds.

Carbon Cycle
Coastal Winds and Clouds
Coastal Winds and Clouds - Metric
Erosion Rates
Greenhouse Effect
Greenhouse Effect - Metric
Hurricane Motion
Hurricane Motion - Metric
River Erosion
Rock Cycle
Water Cycle
Weathering

5.2: Properties and Changes of Matter

2.1: All substances are composed of matter. Matter is made of particles that are too small to be seen but still exist and can be detected by other means. Substances have specific properties by which they can be identified. When two or more different substances are combined a new substance with different properties may be formed. Whether a change results in a new substance or not, the total amount of matter is always conserved.

Phase Changes
Phases of Water

5.2.1: Develop and use a model to describe that matter is made of particles on a scale that is too small to be seen. Emphasize making observations of changes supported by a particle model of matter. Examples could include adding air to expand a balloon, compressing air in a syringe, adding food coloring to water, or dissolving salt in water and evaporating the water. The use of the terms atoms and molecules will be taught in Grades 6 through 8.

Phase Changes
Phases of Water

5.2.2: Ask questions to plan and carry out investigations to identify substances based on patterns of their properties. Emphasize using properties to identify substances. Examples of properties could include color, hardness, conductivity, solubility, or a response to magnetic forces. Examples of substances could include powders, metals, minerals, or liquids.

Chemical Changes
Circuit Builder
Magnetism
Mineral Identification
Mystery Powder Analysis
Solubility and Temperature

5.2.3: Plan and carry out investigations to determine the effect of combining two or more substances. Emphasize whether a new substance is or is not created by the formation of a new substance with different properties. Examples could include combining vinegar and baking soda or rusting an iron nail in water.

Chemical Changes

5.2.4: Use mathematics and computational thinking to provide evidence that regardless of the type of change that occurs when heating, cooling, or combining substances, the total weight of matter is conserved. Examples could include melting an ice cube, dissolving salt in water, and combining baking soda and vinegar in a closed bag.

Chemical Changes

5.3: Cycling of Matter in Ecosystems

3.1: Matter cycles within ecosystems and can be traced from organism to organism. Plants use energy from the Sun to change air and water into matter needed for growth. Animals and decomposers consume matter for their life functions, continuing the cycling of matter. Human behavior can affect the cycling of matter. Scientists and engineers design solutions to conserve Earth’s environments and resources.

Carbon Cycle
Food Chain
Forest Ecosystem
Plants and Snails
Prairie Ecosystem
Ecosystems

5.3.1: Construct an explanation that plants use air, water, and energy from sunlight to produce plant matter needed for growth. Emphasize photosynthesis at a conceptual level and that plant matter comes mostly from air and water, not from the soil. Photosynthesis at the cellular level will be taught in Grades 6 through 8.

Plants and Snails

5.3.2: Obtain, evaluate, and communicate information that animals obtain energy and matter from the food they eat for body repair, growth, and motion and to maintain body warmth. Emphasize that the energy used by animals was once energy from the Sun. Cellular respiration will be taught in Grades 6 through 8.

Energy Conversions

5.3.3: Develop and use a model to describe the movement of matter among plants, animals, decomposers, and the environment. Emphasize that matter cycles between the air and soil and among plants, animals, and microbes as these organisms live and die. Examples could include simple food chains from ecosystems such as deserts or oceans or diagrams of decomposers returning matter to the environment. Complex interactions in a food web will be taught in Grades 6 through 8.

Carbon Cycle
Food Chain
Forest Ecosystem
Plants and Snails
Prairie Ecosystem
Ecosystems

5.3.4: Evaluate design solutions whose primary function is to conserve Earth’s environments and resources. Define the problem, identify criteria and constraints, analyze available data on proposed solutions, and determine an optimal solution. Emphasize how humans can balance everyday needs (agriculture, industry, and energy) while conserving Earth’s environments and resources.

Water Pollution

Correlation last revised: 7/20/2023

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.