4.1: Organisms Functioning in Their Environment

4.1.1: Construct an explanation from evidence that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction. Emphasize how structures support an organism’s survival in its environment and how internal and external structures of plants and animals vary within the same and across multiple Utah environments. Examples of structures could include thorns on a stem to prevent predation or gills on a fish to allow it to breathe underwater.

Circulatory System
Comparing Climates (Customary)
Comparing Climates (Metric)
Digestive System
Flower Pollination
Honeybee Hive
Senses

4.1.2: Develop and use a model of a system to describe how animals receive different types of information from their environment through their senses, process the information in their brain, and respond to the information. Emphasize how animals are able to use their perceptions and memories to guide their actions. Examples could include models that explain how animals sense and then respond to different aspects of their environment such as sounds, temperature, or smell.

Honeybee Hive
Senses

4.1.3: Analyze and interpret data from fossils to provide evidence of the stability and change in organisms and environments from long ago. Emphasize using the structures of fossils to make inferences about ancient organisms. Examples of fossils and environments could include comparing a trilobite with a horseshoe crab in an ocean environment or using a fossil footprint to determine the size of a dinosaur.

Building Pangaea

4.1.4: Engage in argument from evidence based on patterns in rock layers and fossils found in those layers to support an explanation that environments have changed over time. Emphasize the relationship between fossils and past environments. Examples could include tropical plant fossils found in Arctic areas and rock layers with marine shell fossils found above rock layers with land plant fossils.

Erosion Rates
River Erosion
Weathering

4.2: Energy Transfer

2.1: Energy is present whenever there are moving objects, sound, light, or heat. The faster a given object is moving, the more energy it possesses. When objects collide, energy can be transferred from one object to another causing the objects’ motions to change. Energy can also be transferred from place to place by electrical currents, heat, sound, or light. Devices can be designed to convert energy from one form to another.

Sled Wars

4.2.1: Construct an explanation to describe the cause and effect relationship between the speed of an object and the energy of that object. Emphasize using qualitative descriptions of the relationship between speed and energy like fast, slow, strong, or weak. An example could include a ball that is kicked hard has more energy and travels a greater distance than a ball that is kicked softly.

Sled Wars

4.2.2: Ask questions and make observations about the changes in energy that occur when objects collide. Emphasize that energy is transferred when objects collide and may be converted to different forms of energy. Examples could include changes in speed when one moving ball collides with another or the transfer of energy when a toy car hits a wall.

Sled Wars

4.2.3: Plan and carry out an investigation to gather evidence from observations that energy can be transferred from place to place by sound, light, heat, and electrical currents. Examples could include sound causing objects to vibrate and electric currents being used to produce motion or light.

Circuit Builder
Conduction and Convection
Energy Conversions
Heat Absorption
Radiation

4.2.4: Design a device that converts energy from one form to another. Define the problem, identify criteria and constraints, develop possible solutions using models, analyze data from testing solutions, and propose modifications for optimizing a solution. Emphasize identifying the initial and final forms of energy. Examples could include solar ovens that convert light energy to heat energy or a simple alarm system that converts motion energy into sound energy.

Circuit Builder
Energy Conversions

4.3: Wave Patterns

3.1: Waves are regular patterns of motion that transfer energy and have properties such as amplitude (height of the wave) and wavelength (spacing between wave peaks). Waves in water can be directly observed. Light waves cause objects to be seen when light reflected from objects enters the eye. Humans use waves and other patterns to transfer information.

Waves

4.3.1: Develop and use a model to describe the regular patterns of waves. Emphasize patterns in terms of amplitude and wavelength. Examples of models could include diagrams, analogies, and physical models such as water or rope.

Waves

4.3.3: Design a solution to an information transfer problem using wave patterns. Define the problem, identify criteria and constraints, develop possible solutions using models, analyze data from testing solutions, and propose modifications for optimizing a solution. Examples could include using light to transmit a message in Morse code or using lenses and mirrors to see objects that are far away.

Programmable Rover

Correlation last revised: 7/20/2023

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.