PHYS.1: Forces and Interactions

1.1: Uniform motion of an object is natural. Changes in motion are caused by a nonzero sum of forces. A “net force” causes an acceleration as predicted by Newton’s 2nd Law. Qualitative and quantitative analysis of position, velocity, and acceleration provide evidence of the effects of forces. Momentum is defined for a particular frame of reference; it is the product of the mass and the velocity of the object. In any system, total momentum is always conserved. If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is balanced by changes in the momentum of objects outside the system. The time over which these paired forces are exerted determines the impact force.

2D Collisions
Air Track
Atwood Machine
Crumple Zones
Fan Cart Physics

PHYS.1.1: Analyze and interpret data to determine the cause and effect relationship between the net force on an object and its change in motion as summarized by Newton’s Second Law of Motion. Emphasize one-dimensional motion and macroscopic objects moving at non-relativistic speeds. Examples could include objects subject to a net unbalanced force, such as a falling object, an object sliding down a ramp, or a moving object being pulled by a constant force.

Atwood Machine
Crumple Zones
Fan Cart Physics

PHYS.1.2: Use mathematics and computational thinking to support the claim that the total momentum of a system is conserved when there is no net force acting on the system. Emphasize the quantitative conservation of momentum in interactions and the qualitative meaning of this principle. Examples could include one-dimensional elastic or inelastic collisions between objects within the system.

2D Collisions
Air Track

PHYS.1.3: Design a solution that has the function of minimizing the impact force on an object during a collision. Define the problem, identify criteria and constraints, develop possible solutions using models, analyze data to make improvements from iteratively testing solutions, and optimize a solution. Emphasize problems that require application of Newton’s Second Law of Motion or conservation of momentum.

Crumple Zones

PHYS.2: Energy

PHYS.2.1: Analyze and interpret data to track and calculate the transfer of energy within a system. Emphasize the identification of the components of the system, along with their initial and final energies, and mathematical descriptions to depict energy transfer in the system. Examples of energy transfer could include the transfer of energy during a collision or heat transfer.

Energy Conversion in a System
Energy of a Pendulum
Inclined Plane - Rolling Objects
Inclined Plane - Simple Machine
Inclined Plane - Sliding Objects

PHYS.2.2: Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system. Emphasize that uniform distribution of energy is a natural tendency. Examples could include the measurement of the reduction of temperature of a hot object or the increase in temperature of a cold object.

Calorimetry Lab
Conduction and Convection
Heat Transfer by Conduction

PHYS.2.3: Develop and use models on the macroscopic scale to illustrate that energy can be accounted for as a combination of energies associated with the motion of objects and energy associated with the relative positions of objects. Emphasize relationships between components of the model to show that energy is conserved. Examples could include mechanical systems where kinetic energy is transformed to potential energy or vice versa.

Boyle's Law and Charles's Law
Energy Conversion in a System
Energy of a Pendulum
Inclined Plane - Sliding Objects
Potential Energy on Shelves

PHYS.2.4: Design a solution by constructing a device that converts one form of energy into another form of energy to solve a complex real-life problem. Define the problem, identify criteria and constraints, develop possible solutions using models, analyze data to make improvements from iteratively testing solutions, and optimize a solution. Examples of energy transformation could include electrical energy to mechanical energy, mechanical energy to electrical energy, or electromagnetic radiation to thermal energy.

Feel the Heat
Trebuchet

PHYS.2.5: Design a solution to a major global problem that accounts for societal energy needs and wants. Define the problem, identify criteria and constraints, develop possible solutions using models, analyze data to make improvements from iteratively testing solutions, and optimize a solution. Emphasize problems that require the application of conservation of energy principles through energy transfers and transformations. Examples of devices could include one that uses renewable energy resources to perform functions currently performed by nonrenewable fuels or ones that are more energy efficient to conserve energy.

Trebuchet

PHYS.3: Fields

PHYS.3.1: Use mathematics and computational thinking to compare the scale and proportion of gravitational and electric fields using Newton’s Law of Gravitation and Coulomb’s Law. Emphasize the comparative strength of these two field forces, the effect of distance between interacting objects on the magnitudes of these forces, and the use of models to understand field forces.

Coulomb Force (Static)
Gravitational Force
Pith Ball Lab

PHYS.3.2: Plan and conduct an investigation to provide evidence that an electric current causes a magnetic field and that a changing magnetic field causes an electric current. Emphasize the qualitative relationship between electricity and magnetism without necessarily conducting quantitative analysis. Examples could include electromagnets or generators.

Electromagnetic Induction
Magnetic Induction

PHYS.3.3: Analyze and interpret data to compare the effect of changes in position of interacting objects on electric and gravitational forces and energy. Emphasize the similarities and differences between charged particles in electric fields and masses in gravitational fields. Examples could include models, simulations, or experiments that produce data or illustrate field lines between objects.

Charge Launcher
Electromagnetic Induction
Magnetic Induction
Magnetism
Pith Ball Lab
Polarity and Intermolecular Forces

PHYS.3.4: Develop and use a model to evaluate the effects on a field as characteristics of its source and surrounding space are varied. Emphasize how a field changes with distance from its source. Examples of electric fields could include those resulting from point charges. Examples of magnetic fields could include those resulting from dipole magnets or current-bearing wires.

Charge Launcher
Electromagnetic Induction
Magnetic Induction
Magnetism
Pith Ball Lab
Polarity and Intermolecular Forces

PHYS.4: Waves

PHYS.4.1: Analyze and interpret data to derive both qualitative and quantitative relationships based on patterns observed in frequency, wavelength, and speed of waves traveling in various media. Emphasize mathematical relationships and qualitative descriptions. Examples of data could include electromagnetic radiation traveling in a vacuum or glass, sound waves traveling through air or water, or seismic waves traveling through Earth.

Earthquakes 1 - Recording Station
Refraction
Ripple Tank
Waves

PHYS.4.2: Engage in argument based on evidence that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model better explains interactions within a system than the other. Emphasize how the experimental evidence supports the claim and how models and explanations are modified in light of new evidence. Examples could include resonance, interference, diffraction, or the photoelectric effect.

Basic Prism
Photoelectric Effect

PHYS.4.3: Evaluate information about the effects that different frequencies of electromagnetic radiation have when absorbed by biological materials. Emphasize that the energy of electromagnetic radiation is directly proportional to frequency and that the potential damage to living tissue from electromagnetic radiation depends on the energy of the radiation.

Heat Absorption
Herschel Experiment - Metric
Photoelectric Effect
Radiation

PHYS.4.5: Obtain, evaluate, and communicate information about how devices use the principles of electromagnetic radiation and their interactions with matter to transmit and capture information and energy. Emphasize the ways in which devices leverage the wave-particle duality of electromagnetic radiation. Examples could include solar cells, medical imaging devices, or communication technologies.

Phased Array

Correlation last revised: 9/15/2020

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.