Academic Standards

M1.A.SSE.A: Interpret the structure of expressions.

M1.A.SSE.A.1: Interpret expressions that represent a quantity in terms of its context.

M1.A.SSE.A.1.a: Interpret parts of an expression, such as terms, factors, and coefficients.

Compound Interest

Operations with Radical Expressions

Simplifying Algebraic Expressions I

Simplifying Algebraic Expressions II

M1.A.SSE.A.1.b: Interpret complicated expressions by viewing one or more of their parts as a single entity.

Compound Interest

Simplifying Algebraic Expressions I

Simplifying Algebraic Expressions II

Translating and Scaling Functions

Using Algebraic Expressions

M1.A.SSE.B: Write expressions in equivalent forms to solve problems.

M1.A.SSE.B.2: Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

M1.A.SSE.B.2.a: Use the properties of exponents to rewrite exponential expressions.

Dividing Exponential Expressions

Exponents and Power Rules

Multiplying Exponential Expressions

Simplifying Algebraic Expressions II

M1.A.CED.A: Create equations that describe numbers or relationships.

M1.A.CED.A.1: Create equations and inequalities in one variable and use them to solve problems.

Absolute Value Equations and Inequalities

Arithmetic Sequences

Compound Interest

Exploring Linear Inequalities in One Variable

Geometric Sequences

Linear Inequalities in Two Variables

Modeling One-Step Equations

Modeling and Solving Two-Step Equations

Quadratic Inequalities

Solving Equations on the Number Line

Solving Linear Inequalities in One Variable

Solving Two-Step Equations

Using Algebraic Equations

M1.A.CED.A.2: Create equations in two or more variables to represent relationships between quantities; graph equations with two variables on coordinate axes with labels and scales.

Absolute Value Equations and Inequalities

Circles

Compound Interest

Linear Functions

Point-Slope Form of a Line

Points, Lines, and Equations

Quadratics in Polynomial Form

Quadratics in Vertex Form

Slope-Intercept Form of a Line

Solving Equations on the Number Line

Standard Form of a Line

Using Algebraic Equations

M1.A.CED.A.3: Represent constraints by equations or inequalities and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.

Linear Inequalities in Two Variables

Linear Programming

Solving Linear Systems (Standard Form)

Systems of Linear Inequalities (Slope-intercept form)

M1.A.CED.A.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Area of Triangles

Solving Formulas for any Variable

M1.A.REI.A: Solve equations and inequalities in one variable.

M1.A.REI.A.1: Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

Area of Triangles

Compound Inequalities

Exploring Linear Inequalities in One Variable

Linear Inequalities in Two Variables

Modeling One-Step Equations

Modeling and Solving Two-Step Equations

Solving Algebraic Equations I

Solving Algebraic Equations II

Solving Equations on the Number Line

Solving Formulas for any Variable

Solving Linear Inequalities in One Variable

Solving Two-Step Equations

M1.A.REI.B: Solve systems of equations.

M1.A.REI.B.2: Write and solve a system of linear equations in context.

Cat and Mouse (Modeling with Linear Systems)

Solving Equations by Graphing Each Side

Solving Linear Systems (Matrices and Special Solutions)

Solving Linear Systems (Slope-Intercept Form)

Solving Linear Systems (Standard Form)

2.3.2.1.1: Solve systems both algebraically and graphically.

Cat and Mouse (Modeling with Linear Systems)

Solving Equations by Graphing Each Side

Solving Linear Systems (Matrices and Special Solutions)

Solving Linear Systems (Slope-Intercept Form)

Solving Linear Systems (Standard Form)

2.3.2.1.2: Systems are limited to at most two equations in two variables.

Cat and Mouse (Modeling with Linear Systems)

Solving Equations by Graphing Each Side

Solving Linear Systems (Matrices and Special Solutions)

Solving Linear Systems (Slope-Intercept Form)

Solving Linear Systems (Standard Form)

M1.A.REI.C: Represent and solve equations and inequalities graphically.

M1.A.REI.C.3: Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).

Absolute Value Equations and Inequalities

Circles

Ellipses

Hyperbolas

Parabolas

Point-Slope Form of a Line

Points, Lines, and Equations

Standard Form of a Line

M1.A.REI.C.4: Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the approximate solutions using technology.

Cat and Mouse (Modeling with Linear Systems)

Point-Slope Form of a Line

Solving Equations by Graphing Each Side

Solving Linear Systems (Matrices and Special Solutions)

Solving Linear Systems (Slope-Intercept Form)

Standard Form of a Line

M1.A.REI.C.5: Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

Linear Inequalities in Two Variables

Linear Programming

Systems of Linear Inequalities (Slope-intercept form)

M1.F.IF.A: Understand the concept of a function and use function notation.

M1.F.IF.A.1: Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).

Absolute Value with Linear Functions

Exponential Functions

Function Machines 2 (Functions, Tables, and Graphs)

Function Machines 3 (Functions and Problem Solving)

Introduction to Exponential Functions

Introduction to Functions

Linear Functions

Logarithmic Functions

Parabolas

Point-Slope Form of a Line

Points, Lines, and Equations

Quadratics in Factored Form

Quadratics in Polynomial Form

Quadratics in Vertex Form

Radical Functions

Standard Form of a Line

M1.F.IF.A.2: Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

Absolute Value with Linear Functions

Translating and Scaling Functions

M1.F.IF.B: Interpret functions that arise in applications in terms of the context.

M1.F.IF.B.3: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.

Absolute Value with Linear Functions

Exponential Functions

Function Machines 3 (Functions and Problem Solving)

General Form of a Rational Function

Graphs of Polynomial Functions

Logarithmic Functions

Points, Lines, and Equations

Quadratics in Factored Form

Quadratics in Polynomial Form

Quadratics in Vertex Form

Radical Functions

M1.F.IF.B.4: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.

General Form of a Rational Function

Introduction to Functions

Logarithmic Functions

Radical Functions

Rational Functions

M1.F.IF.B.5: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Cat and Mouse (Modeling with Linear Systems)

Slope

M1.F.IF.C: Analyze functions using different representations.

M1.F.IF.C.6: Graph functions expressed symbolically and show key features of the graph, by hand and using technology.

M1.F.IF.C.6.a: Graph linear functions and show its intercepts.

Absolute Value with Linear Functions

Cat and Mouse (Modeling with Linear Systems)

Exponential Functions

Graphs of Polynomial Functions

Linear Functions

Point-Slope Form of a Line

Points, Lines, and Equations

Polynomials and Linear Factors

Quadratics in Factored Form

Quadratics in Polynomial Form

Quadratics in Vertex Form

Roots of a Quadratic

Slope-Intercept Form of a Line

Standard Form of a Line

Zap It! Game

M1.F.IF.C.7: Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).

General Form of a Rational Function

Graphs of Polynomial Functions

Linear Functions

Logarithmic Functions

Quadratics in Polynomial Form

Quadratics in Vertex Form

M1.F.BF.A: Build a function that models a relationship between two quantities.

M1.F.BF.A.1: Write a function that describes a relationship between two quantities.

M1.F.BF.A.1.a: Determine an explicit expression, a recursive process, or steps for calculation from a context.

Arithmetic Sequences

Arithmetic and Geometric Sequences

Geometric Sequences

M1.F.BF.A.2: Write arithmetic and geometric sequences with an explicit formula and use them to model situations.

Arithmetic Sequences

Arithmetic and Geometric Sequences

Geometric Sequences

M1.F.LE.A: Construct and compare linear and exponential models and solve problems.

M1.F.LE.A.1: Distinguish between situations that can be modeled with linear functions and with exponential functions.

M1.F.LE.A.1.a: Recognize that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals.

Compound Interest

Direct and Inverse Variation

Exponential Functions

Exponential Growth and Decay

Introduction to Exponential Functions

Linear Functions

Slope-Intercept Form of a Line

M1.F.LE.A.1.b: Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

Arithmetic Sequences

Compound Interest

Direct and Inverse Variation

Linear Functions

Slope-Intercept Form of a Line

M1.F.LE.A.1.c: Recognize situations in which a quantity grows or decays by a constant factor per unit interval relative to another.

Compound Interest

Exponential Growth and Decay

M1.F.LE.A.2: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a table, a description of a relationship, or input-output pairs.

Absolute Value with Linear Functions

Arithmetic Sequences

Arithmetic and Geometric Sequences

Compound Interest

Exponential Functions

Function Machines 1 (Functions and Tables)

Function Machines 2 (Functions, Tables, and Graphs)

Function Machines 3 (Functions and Problem Solving)

Geometric Sequences

Introduction to Exponential Functions

Linear Functions

Logarithmic Functions

Point-Slope Form of a Line

Points, Lines, and Equations

Slope-Intercept Form of a Line

Standard Form of a Line

M1.F.LE.A.3: Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly.

Compound Interest

Introduction to Exponential Functions

M1.F.LE.B: Interpret expressions for functions in terms of the situation they model.

M1.F.LE.B.4: Interpret the parameters in a linear or exponential function in terms of a context.

Arithmetic Sequences

Compound Interest

Exponential Growth and Decay

Introduction to Exponential Functions

M1.G.CO.A: Experiment with transformations in the plane.

M1.G.CO.A.1: Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, plane, distance along a line, and distance around a circular arc.

Circles

Constructing Congruent Segments and Angles

Constructing Parallel and Perpendicular Lines

Inscribed Angles

Parallel, Intersecting, and Skew Lines

M1.G.CO.A.2: Represent transformations in the plane in multiple ways, including technology. Describe transformations as functions that take points in the plane (pre-image) as inputs and give other points (image) as outputs. Compare transformations that preserve distance and angle measure to those that do not (e.g., translation versus horizontal stretch).

Dilations

Reflections

Rotations, Reflections, and Translations

Translations

M1.G.CO.A.3: Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry the shape onto itself.

Dilations

Reflections

Rotations, Reflections, and Translations

Similar Figures

M1.G.CO.A.4: Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.

Circles

Dilations

Reflections

Rotations, Reflections, and Translations

Similar Figures

Translations

M1.G.CO.A.5: Given a geometric figure and a rigid motion, draw the image of the figure in multiple ways, including technology. Specify a sequence of rigid motions that will carry a given figure onto another.

Dilations

Reflections

Rotations, Reflections, and Translations

Similar Figures

Translations

M1.G.CO.B: Understand congruence in terms of rigid motions.

M1.G.CO.B.6: Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to determine informally if they are congruent.

Absolute Value with Linear Functions

Circles

Dilations

Holiday Snowflake Designer

Proving Triangles Congruent

Reflections

Rotations, Reflections, and Translations

Similar Figures

Translations

M1.G.CO.B.8: Explain how the criteria for triangle congruence (ASA, SAS, AAS, and SSS) follow from the definition of congruence in terms of rigid motions.

M1.G.CO.C: Prove geometric theorems.

M1.G.CO.C.9: Prove theorems about lines and angles.

M1.G.CO.C.10: Prove theorems about triangles.

Isosceles and Equilateral Triangles

Proving Triangles Congruent

Pythagorean Theorem

Pythagorean Theorem with a Geoboard

Triangle Angle Sum

Triangle Inequalities

M1.G.CO.C.11: Prove theorems about parallelograms.

Parallelogram Conditions

Special Parallelograms

M1.S.ID.A: Summarize, represent, and interpret data on a single count or measurement variable.

M1.S.ID.A.1: Represent single or multiple data sets with dot plots, histograms, stem plots (stem and leaf), and box plots.

Box-and-Whisker Plots

Histograms

Mean, Median, and Mode

Reaction Time 1 (Graphs and Statistics)

Real-Time Histogram

Stem-and-Leaf Plots

M1.S.ID.A.2: Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.

Box-and-Whisker Plots

Describing Data Using Statistics

Mean, Median, and Mode

Polling: City

Populations and Samples

Reaction Time 1 (Graphs and Statistics)

Real-Time Histogram

Sight vs. Sound Reactions

M1.S.ID.A.3: Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).

Box-and-Whisker Plots

Describing Data Using Statistics

Least-Squares Best Fit Lines

Mean, Median, and Mode

Populations and Samples

Reaction Time 1 (Graphs and Statistics)

Reaction Time 2 (Graphs and Statistics)

Real-Time Histogram

Stem-and-Leaf Plots

M1.S.ID.B: Summarize, represent, and interpret data on two categorical and quantitative variables.

M1.S.ID.B.4: Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.

M1.S.ID.B.4.a: Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context.

Correlation

Least-Squares Best Fit Lines

Solving Using Trend Lines

Trends in Scatter Plots

Zap It! Game

M1.S.ID.B.4.b: Fit a linear function for a scatter plot that suggests a linear association.

Correlation

Least-Squares Best Fit Lines

Solving Using Trend Lines

Trends in Scatter Plots

M1.S.ID.C: Interpret linear models.

M1.S.ID.C.5: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.

Cat and Mouse (Modeling with Linear Systems)

Correlation

Solving Using Trend Lines

Trends in Scatter Plots

M1.S.ID.C.6: Compute (using technology) and interpret the correlation coefficient of a linear fit.

M1.S.ID.C.7: Distinguish between correlation and causation.

Correlation last revised: 9/15/2020

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.