OH.Math.HSG.CO: Congruence

OH.Math.HSG.CO.A: Experiment with transformations in the plane.

OH.Math.HSG.CO.1: Know precise definitions of ray, angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and arc length.

Circles
Inscribed Angles
Parallel, Intersecting, and Skew Lines

OH.Math.HSG.CO.2: Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not, e.g., translation versus horizontal stretch.

Dilations
Rotations, Reflections, and Translations
Translations

OH.Math.HSG.CO.3: Identify the symmetries of a figure, which are the rotations and reflections that carry it onto itself.

OH.Math.HSG.CO.3a: Identify figures that have line symmetry; draw and use lines of symmetry to analyze properties of shapes.

Holiday Snowflake Designer

OH.Math.HSG.CO.3b: Identify figures that have rotational symmetry; determine the angle of rotation, and use rotational symmetry to analyze properties of shapes.

Holiday Snowflake Designer

OH.Math.HSG.CO.4: Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.

Circles
Rotations, Reflections, and Translations
Similar Figures
Translations

OH.Math.HSG.CO.5: Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using items such as graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

Reflections
Rotations, Reflections, and Translations
Similar Figures
Translations

OH.Math.HSG.CO.B: Understand congruence in terms of rigid motions.

OH.Math.HSG.CO.6: Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.

Absolute Value with Linear Functions
Circles
Dilations
Holiday Snowflake Designer
Reflections
Rotations, Reflections, and Translations
Similar Figures
Translations

OH.Math.HSG.CO.C: Prove geometric theorems both formally and informally using a variety of methods.

OH.Math.HSG.CO.9: Prove and apply theorems about lines and angles.

Investigating Angle Theorems

OH.Math.HSG.CO.10: Prove and apply theorems about triangles.

Isosceles and Equilateral Triangles
Polygon Angle Sum
Triangle Angle Sum
Triangle Inequalities

OH.Math.HSG.CO.11: Prove and apply theorems about parallelograms.

Parallelogram Conditions
Special Parallelograms

OH.Math.HSG.CO.D: Make geometric constructions.

OH.Math.HSG.CO.12: Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.).

Constructing Congruent Segments and Angles
Constructing Parallel and Perpendicular Lines
Segment and Angle Bisectors

OH.Math.HSG.CO.13: Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.

Concurrent Lines, Medians, and Altitudes
Inscribed Angles

OH.Math.HSG.CO.E: Classify and analyze geometric figures.

OH.Math.HSG.CO.14: Classify two-dimensional figures in a hierarchy based on properties.

Classifying Quadrilaterals
Classifying Triangles
Parallelogram Conditions
Special Parallelograms

OH.Math.HSG.SRT: Similarity, Right Triangles, and Trigonometry

OH.Math.HSG.SRT.A: Understand similarity in terms of similarity transformations.

OH.Math.HSG.SRT.1: Verify experimentally the properties of dilations given by a center and a scale factor:

OH.Math.HSG.SRT.1a: A dilation takes a line not passing through the center of the dilation to a parallel line and leaves a line passing through the center unchanged.

Dilations

OH.Math.HSG.SRT.1b: The dilation of a line segment is longer or shorter in the ratio given by the scale factor.

Dilations
Similar Figures

OH.Math.HSG.SRT.2: Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.

Circles
Dilations
Similar Figures

OH.Math.HSG.SRT.3: Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.

Similar Figures

OH.Math.HSG.SRT.B: Prove and apply theorems both formally and informally involving similarity using a variety of methods.

OH.Math.HSG.SRT.4: Prove and apply theorems about triangles.

Similar Figures

OH.Math.HSG.SRT.5: Use congruence and similarity criteria for triangles to solve problems and to justify relationships in geometric figures that can be decomposed into triangles.

Congruence in Right Triangles
Constructing Congruent Segments and Angles
Perimeters and Areas of Similar Figures
Proving Triangles Congruent
Similar Figures
Similarity in Right Triangles

OH.Math.HSG.SRT.C: Define trigonometric ratios, and solve problems involving right triangles.

OH.Math.HSG.SRT.6: Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.

Sine, Cosine, and Tangent Ratios

OH.Math.HSG.SRT.8: Solve problems involving right triangles.

OH.Math.HSG.SRT.8a: Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems if one of the two acute angles and a side length is given.

Cosine Function
Distance Formula
Pythagorean Theorem
Pythagorean Theorem with a Geoboard
Sine Function
Sine, Cosine, and Tangent Ratios
Tangent Function

OH.Math.HSG.SRT.8b: Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.

Cosine Function
Distance Formula
Pythagorean Theorem
Pythagorean Theorem with a Geoboard
Sine Function
Sine, Cosine, and Tangent Ratios
Tangent Function

OH.Math.HSG.C: Circles

OH.Math.HSG.C.A: Understand and apply theorems about circles.

OH.Math.HSG.C.2: Identify and describe relationships among angles, radii, chords, tangents, and arcs and use them to solve problems.

Chords and Arcs
Circumference and Area of Circles
Inscribed Angles

OH.Math.HSG.C.3: Construct the inscribed and circumscribed circles of a triangle; prove and apply the property that opposite angles are supplementary for a quadrilateral inscribed in a circle.

Concurrent Lines, Medians, and Altitudes
Inscribed Angles

OH.Math.HSG.C.B: Find arc lengths and areas of sectors of circles.

OH.Math.HSG.C.6: Derive formulas that relate degrees and radians, and convert between the two.

Cosine Function
Sine Function
Tangent Function

OH.Math.HSG.GPE: Expressing Geometric Properties with Equations

OH.Math.HSG.GPE.A: Translate between the geometric description and the equation for a conic section.

OH.Math.HSG.GPE.1: Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.

Circles

OH.Math.HSG.GPE.2: Derive the equation of a parabola given a focus and directrix.

Parabolas

OH.Math.HSG.GPE.3: Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant.

Ellipses
Hyperbolas

OH.Math.HSG.GPE.B: Use coordinates to prove simple geometric theorems algebraically and to verify specific geometric statements.

OH.Math.HSG.GPE.4: Use coordinates to prove simple geometric theorems algebraically and to verify geometric relationships algebraically, including properties of special triangles, quadrilaterals, and circles.

Circles
Cosine Function
Sine Function
Tangent Function

OH.Math.HSG.GMD: Geometric Measurement and Dimension

OH.Math.HSG.GMD.A: Explain volume formulas, and use them to solve problems.

OH.Math.HSG.GMD.1: Give an informal argument for the formulas for the circumference of a circle, area of a circle, and volume of a cylinder, pyramid, and cone.

Circumference and Area of Circles
Prisms and Cylinders
Pyramids and Cones

OH.Math.HSG.GMD.2: Give an informal argument using Cavalieri’s principle for the formulas for the volume of a sphere and other solid figures.

Prisms and Cylinders
Pyramids and Cones

OH.Math.HSG.GMD.3: Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.

Prisms and Cylinders
Pyramids and Cones

OH.Math.HSG.GMD.C: Understand the relationships between lengths, area, and volumes.

OH.Math.HSG.GMD.6: When figures are similar, understand and apply the fact that when a figure is scaled by a factor of k, the effect on lengths, areas, and volumes is that they are multiplied by k, k², and k³, respectively.

Dilations
Perimeters and Areas of Similar Figures
Similar Figures

Correlation last revised: 9/24/2019

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.