College- and Career-Readiness Standards

2.1.1: Interpret the structure of expressions

A-SSE.1: Interpret expressions that represent a quantity in terms of its context.

A-SSE.1a: Interpret parts of an expression, such as terms, factors, and coefficients.

Compound Interest

Operations with Radical Expressions

Simplifying Algebraic Expressions I

Simplifying Algebraic Expressions II

A-SSE.1b: Interpret complicated expressions by viewing one or more of their parts as a single entity.

Compound Interest

Simplifying Algebraic Expressions I

Simplifying Algebraic Expressions II

2.2.1: Create equations that describe numbers or relationships

A-CED.1: Create equations and inequalities in one variable and use them to solve problems.

Absolute Value Equations and Inequalities

Arithmetic Sequences

Exploring Linear Inequalities in One Variable

Geometric Sequences

Linear Inequalities in Two Variables

Modeling One-Step Equations

Modeling and Solving Two-Step Equations

Solving Equations on the Number Line

Solving Linear Inequalities in One Variable

Solving Two-Step Equations

Using Algebraic Equations

A-CED.2: Create equations in two variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

Absolute Value Equations and Inequalities

Circles

Linear Functions

Point-Slope Form of a Line

Points, Lines, and Equations

Quadratics in Polynomial Form

Quadratics in Vertex Form

Solving Equations on the Number Line

Standard Form of a Line

Using Algebraic Equations

A-CED.3: Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context.

Linear Inequalities in Two Variables

Linear Programming

Solving Linear Systems (Standard Form)

Systems of Linear Inequalities (Slope-intercept form)

A-CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Area of Triangles

Solving Formulas for any Variable

2.3.1: Solve equations and inequalities in one variable

A-REI.3: Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

Area of Triangles

Compound Inequalities

Exploring Linear Inequalities in One Variable

Linear Inequalities in Two Variables

Modeling One-Step Equations

Modeling and Solving Two-Step Equations

Solving Algebraic Equations II

Solving Equations on the Number Line

Solving Formulas for any Variable

Solving Linear Inequalities in One Variable

Solving Two-Step Equations

2.3.2: Solve systems of equations

A-REI.5: Given a system of two equations in two variables, show and explain why the sum of equivalent forms of the equations produces the same solution as the original system.

Solving Equations by Graphing Each Side

Solving Linear Systems (Standard Form)

A-REI.6: Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.

Cat and Mouse (Modeling with Linear Systems)

Solving Equations by Graphing Each Side

Solving Linear Systems (Matrices and Special Solutions)

Solving Linear Systems (Slope-Intercept Form)

Solving Linear Systems (Standard Form)

2.3.3: Represent and solve equations and inequalities graphically

A-REI.10: Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).

Absolute Value Equations and Inequalities

Circles

Parabolas

Point-Slope Form of a Line

Points, Lines, and Equations

Standard Form of a Line

A-REI.11: Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, rational, absolute value and exponential functions.

Cat and Mouse (Modeling with Linear Systems)

Point-Slope Form of a Line

Solving Equations by Graphing Each Side

Solving Linear Systems (Matrices and Special Solutions)

Solving Linear Systems (Slope-Intercept Form)

Standard Form of a Line

A-REI.12: Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

Linear Inequalities in Two Variables

Linear Programming

Systems of Linear Inequalities (Slope-intercept form)

3.1.1: Understand the concept of a function and use function notation

F-IF.1: Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).

Absolute Value with Linear Functions

Exponential Functions

Introduction to Exponential Functions

Introduction to Functions

Linear Functions

Logarithmic Functions

Parabolas

Point-Slope Form of a Line

Points, Lines, and Equations

Quadratics in Factored Form

Quadratics in Polynomial Form

Quadratics in Vertex Form

Radical Functions

Standard Form of a Line

F-IF.3: Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.

Arithmetic Sequences

Geometric Sequences

3.1.2: Interpret functions that arise in applications in terms of the context

F-IF.4: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.

Absolute Value with Linear Functions

Exponential Functions

General Form of a Rational Function

Graphs of Polynomial Functions

Logarithmic Functions

Quadratics in Factored Form

Quadratics in Polynomial Form

Quadratics in Vertex Form

Radical Functions

F-IF.5: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.

Introduction to Functions

Logarithmic Functions

Radical Functions

F-IF.6: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Cat and Mouse (Modeling with Linear Systems)

Slope

3.1.3: Analyze functions using different representations

F-IF.7: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

F-IF.7a: Graph functions (linear and quadratic) and show intercepts, maxima, and minima.

Absolute Value with Linear Functions

Cat and Mouse (Modeling with Linear Systems)

Exponential Functions

Linear Functions

Point-Slope Form of a Line

Points, Lines, and Equations

Quadratics in Factored Form

Quadratics in Polynomial Form

Quadratics in Vertex Form

Roots of a Quadratic

Slope-Intercept Form of a Line

Standard Form of a Line

Zap It! Game

F-IF.9: Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).

General Form of a Rational Function

Graphs of Polynomial Functions

Linear Functions

Logarithmic Functions

Quadratics in Polynomial Form

Quadratics in Vertex Form

3.2.1: Build a function that models a relationship between two quantities

F-BF.1: Write a function that describes a relationship between two quantities.

F-BF.1a: Determine an explicit expression, a recursive process, or steps for calculation from a context.

Arithmetic Sequences

Arithmetic and Geometric Sequences

Geometric Sequences

F-BF.2: Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.

Arithmetic Sequences

Arithmetic and Geometric Sequences

Geometric Sequences

3.3.1: Construct and compare linear, quadratic, and exponential models and solve problems

F-LE.1: Distinguish between situations that can be modeled with linear functions and with exponential functions.

F-LE.1a: Prove that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals.

Compound Interest

Direct and Inverse Variation

Exponential Functions

Introduction to Exponential Functions

Slope-Intercept Form of a Line

F-LE.1b: Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

Arithmetic Sequences

Compound Interest

Direct and Inverse Variation

Linear Functions

Slope-Intercept Form of a Line

F-LE.1c: Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

F-LE.2: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

Absolute Value with Linear Functions

Arithmetic Sequences

Arithmetic and Geometric Sequences

Compound Interest

Exponential Functions

Geometric Sequences

Introduction to Exponential Functions

Linear Functions

Logarithmic Functions

Point-Slope Form of a Line

Points, Lines, and Equations

Slope-Intercept Form of a Line

Standard Form of a Line

F-LE.3: Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

Compound Interest

Introduction to Exponential Functions

3.3.2: Interpret expressions for functions in terms of the situation they model

F-LE.5: Interpret the parameters in a linear or exponential function in terms of a context.

Arithmetic Sequences

Compound Interest

Introduction to Exponential Functions

4.1.1: Experiment with transformations in the plane

G-CO.1: Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.

Circles

Inscribed Angles

Parallel, Intersecting, and Skew Lines

G-CO.2: Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).

Dilations

Rotations, Reflections, and Translations

Translations

G-CO.3: Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.

Reflections

Rotations, Reflections, and Translations

Similar Figures

G-CO.4: Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.

Circles

Rotations, Reflections, and Translations

Similar Figures

Translations

G-CO.5: Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

Reflections

Rotations, Reflections, and Translations

Similar Figures

Translations

4.1.2: Understand congruence in terms of rigid motions

G-CO.6: Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.

Absolute Value with Linear Functions

Circles

Dilations

Holiday Snowflake Designer

Reflections

Rotations, Reflections, and Translations

Similar Figures

Translations

4.1.3: Prove geometric theorems

G-CO.9: Prove theorems about lines and angles.

G-CO.10: Prove theorems about triangles.

Isosceles and Equilateral Triangles

Triangle Angle Sum

Triangle Inequalities

G-CO.11: Prove theorems about parallelograms.

Parallelogram Conditions

Special Parallelograms

5.1.1: Summarize, represent, and interpret data on a single count or measurement variable

S-ID.1: Represent and analyze data with plots on the real number line (dot plots, histograms, and box plots).

Box-and-Whisker Plots

Histograms

Mean, Median, and Mode

Polling: City

Reaction Time 1 (Graphs and Statistics)

Real-Time Histogram

Sight vs. Sound Reactions

S-ID.2: Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.

Box-and-Whisker Plots

Describing Data Using Statistics

Mean, Median, and Mode

Polling: City

Populations and Samples

Reaction Time 1 (Graphs and Statistics)

Real-Time Histogram

S-ID.3: Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).

Box-and-Whisker Plots

Describing Data Using Statistics

Least-Squares Best Fit Lines

Mean, Median, and Mode

Populations and Samples

Reaction Time 1 (Graphs and Statistics)

Real-Time Histogram

Stem-and-Leaf Plots

5.1.2: Summarize, represent, and interpret data on two categorical and quantitative variables

S-ID.5: Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.

S-ID.6: Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.

S-ID.6a: Fit a function to the data; use functions fitted to data to solve problems in the context of the data.

Correlation

Least-Squares Best Fit Lines

Solving Using Trend Lines

Trends in Scatter Plots

Zap It! Game

S-ID.6c: Fit a linear function for a scatter plot that suggests a linear association.

Correlation

Least-Squares Best Fit Lines

Solving Using Trend Lines

Trends in Scatter Plots

5.1.3: Interpret linear models

S-ID.7: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.

Correlation

Solving Using Trend Lines

Trends in Scatter Plots

S-ID.8: Compute (using technology) and interpret the correlation coefficient of a linear fit.

S-ID.9: Distinguish between correlation and causation.

Correlation last revised: 4/9/2018

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.