Academic Standards

4.OA.A.1: Represent verbal statements of multiplicative comparisons as multiplication equations. Interpret a multiplication equation as a comparison (e.g., 35 is the number of objects in 5 groups, each containing 7 objects, and is also the number of objects in 7 groups, each containing 5 objects).

Chocomatic (Multiplication, Arrays, and Area)

Critter Count (Modeling Multiplication)

Factor Trees (Factoring Numbers)

Multiplying Decimals (Area Model)

4.OA.A.2: Multiply or divide within 1000 to solve word problems involving multiplicative comparison (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison).

Critter Count (Modeling Multiplication)

No Alien Left Behind (Division with Remainders)

4.OA.A.3: Solve multistep word problems using the four operations, including problems in which remainders must be interpreted. Understand how the remainder is a fraction of the divisor. Represent these problems using equations with a letter standing for the unknown quantity.

Cargo Captain (Multi-digit Subtraction)

No Alien Left Behind (Division with Remainders)

Number Line Frog Hop (Addition and Subtraction)

4.OA.B.4: Find all factor pairs for a whole number in the range 1 to 100 and understand that a whole number is a multiple of each of its factors.

Chocomatic (Multiplication, Arrays, and Area)

Factor Trees (Factoring Numbers)

Pattern Flip (Patterns)

4.OA.C.5: Generate a number pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself and explain the pattern informally (e.g., given the rule “add 3” and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers).

Function Machines 1 (Functions and Tables)

Pattern Flip (Patterns)

4.OA.C.6: When solving problems, assess the reasonableness of answers using mental computation and estimation strategies including rounding.

Cannonball Clowns (Number Line Estimation)

4.NBT.A.1: Apply concepts of place value, multiplication, and division to understand that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right.

Cannonball Clowns (Number Line Estimation)

Modeling Whole Numbers and Decimals (Base-10 Blocks)

4.NBT.A.2: Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.

Cannonball Clowns (Number Line Estimation)

Modeling Whole Numbers and Decimals (Base-10 Blocks)

4.NBT.A.3: Use place value understanding to round multi-digit whole numbers to any place.

Rounding Whole Numbers (Number Line)

4.NBT.B.4: Fluently add and subtract multi-digit whole numbers using a standard algorithm.

Adding Whole Numbers and Decimals (Base-10 Blocks)

Cargo Captain (Multi-digit Subtraction)

Number Line Frog Hop (Addition and Subtraction)

Subtracting Whole Numbers and Decimals (Base-10 Blocks)

Target Sum Card Game (Multi-digit Addition)

4.NBT.B.5: Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

Chocomatic (Multiplication, Arrays, and Area)

Critter Count (Modeling Multiplication)

4.NBT.B.6: Demonstrate understanding of division by finding whole-number quotients and remainders with up to four-digit dividends and one-digit divisors.

No Alien Left Behind (Division with Remainders)

Pattern Flip (Patterns)

4.NF.A.1: Explain why a fraction a/b is equivalent to a fraction (n x a)/(n x b) by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to understand and generate equivalent fractions.

Adding Fractions (Fraction Tiles)

Equivalent Fractions (Fraction Tiles)

Factor Trees (Factoring Numbers)

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

Fraction Garden (Comparing Fractions)

Fractions Greater than One (Fraction Tiles)

Modeling Fractions (Area Models)

Toy Factory (Set Models of Fractions)

4.NF.A.2: Compare two fractions with different numerators and different denominators (e.g., by creating common denominators or numerators and by comparing to a benchmark fraction).

4.NF.A.2b: Record the results of comparisons with symbols >, =, or <, and justify the conclusions.

Equivalent Fractions (Fraction Tiles)

Fraction Artist 2 (Area Models of Fractions)

Fraction Garden (Comparing Fractions)

Fractions Greater than One (Fraction Tiles)

Modeling Fractions (Area Models)

Toy Factory (Set Models of Fractions)

4.NF.B.3: Understand a fraction a/b with a > 1 as a sum of unit fractions (1/b).

4.NF.B.3a: Understand addition and subtraction of fractions as joining and separating parts referring to the same whole.

Adding Fractions (Fraction Tiles)

Fraction Artist 2 (Area Models of Fractions)

Fractions Greater than One (Fraction Tiles)

Modeling Fractions (Area Models)

4.NF.B.3b: Decompose a fraction into a sum of fractions with the same denominator in more than one way (e.g., 3/8 = 1/8 + 1/8+ 1/8; 3/8 = 2/8 + 1/8; 2 1/8 = 1 + 1 + 1/8; or 2 1/8 = 8/8 + 8/8 + 1/8).

Adding Fractions (Fraction Tiles)

Equivalent Fractions (Fraction Tiles)

Factor Trees (Factoring Numbers)

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

Fraction Garden (Comparing Fractions)

Fractions Greater than One (Fraction Tiles)

Modeling Fractions (Area Models)

Toy Factory (Set Models of Fractions)

4.NF.B.3c: Add and subtract mixed numbers with like denominators (e.g., by using properties of operations and the relationship between addition and subtraction and/or by replacing each mixed number with an equivalent fraction).

Fractions Greater than One (Fraction Tiles)

4.NF.B.3d: Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators.

Fraction Artist 2 (Area Models of Fractions)

4.NF.B.4: Build fractions from unit fractions.

4.NF.B.4a: Understand a fraction a/b as a multiple of a unit fraction 1/b. In general, a/b = a x 1/b.

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

Modeling Fractions (Area Models)

4.NF.B.4b: Understand a multiple of a/b as a multiple of a unit fraction 1/b, and use this understanding to multiply a whole number by a fraction. In general, n x a/b = (n x a)/b.

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

Modeling Fractions (Area Models)

4.NF.C.6: Use decimal notation for fractions with denominators 10 (tenths) or 100 (hundredths), and locate these decimals on a number line.

Fraction, Decimal, Percent (Area and Grid Models)

Modeling Decimals (Area and Grid Models)

4.NF.C.7: Compare two decimals to hundredths by reasoning about their size. Understand that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, =, or <.

Adding Whole Numbers and Decimals (Base-10 Blocks)

Modeling Decimals (Area and Grid Models)

Modeling Whole Numbers and Decimals (Base-10 Blocks)

Subtracting Whole Numbers and Decimals (Base-10 Blocks)

Treasure Hunter (Decimals on the Number Line)

4.MD.A.1: Know relative sizes of measurement units within one system of units which could include km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit and in a smaller unit in terms of a larger unit.

Cannonball Clowns (Number Line Estimation)

4.MD.A.2: Use the four operations to solve word problems and problems in real-world context involving distances, intervals of time (hr, min, sec), liquid volumes, masses of objects, and money, including decimals and problems involving fractions with like denominators, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using a variety of representations, including number lines that feature a measurement scale.

Elapsed Time

Road Trip (Problem Solving)

4.MD.A.3: Apply the area and perimeter formulas for rectangles in mathematical problems and problems in real-world contexts including problems with unknown side lengths.

Chocomatic (Multiplication, Arrays, and Area)

4.G.A.1: Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.

City Tour (Coordinates)

Classifying Quadrilaterals

Elevator Operator (Line Graphs)

4.G.A.2: Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size (e.g., understand right triangles as a category, and identify right triangles).

4.G.A.3: Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.

6.1.1: Mathematically proficient students explain to themselves the meaning of a problem, look for entry points to begin work on the problem, and plan and choose a solution pathway. While engaging in productive struggle to solve a problem, they continually ask themselves, “Does this make sense?' to monitor and evaluate their progress and change course if necessary. Once they have a solution, they look back at the problem to determine if the solution is reasonable and accurate. Mathematically proficient students check their solutions to problems using different methods, approaches, or representations. They also compare and understand different representations of problems and different solution pathways, both their own and those of others.

Fraction, Decimal, Percent (Area and Grid Models)

6.2.1: Mathematically proficient students make sense of quantities and their relationships in problem situations. Students can contextualize and decontextualize problems involving quantitative relationships. They contextualize quantities, operations, and expressions by describing a corresponding situation. They decontextualize a situation by representing it symbolically. As they manipulate the symbols, they can pause as needed to access the meaning of the numbers, the units, and the operations that the symbols represent. Mathematically proficient students know and flexibly use different properties of operations, numbers, and geometric objects and when appropriate they interpret their solution in terms of the context.

Fraction, Decimal, Percent (Area and Grid Models)

6.4.1: Mathematically proficient students apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. When given a problem in a contextual situation, they identify the mathematical elements of a situation and create a mathematical model that represents those mathematical elements and the relationships among them. Mathematically proficient students use their model to analyze the relationships and draw conclusions. They interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

Fraction, Decimal, Percent (Area and Grid Models)

Correlation last revised: 4/4/2018

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.