Academic Standards

G.G-CO.A: Experiment with transformations in the plane.

G.G-CO.A.1: Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.

Circles

Inscribed Angles

Parallel, Intersecting, and Skew Lines

G.G-CO.A.2: Represent and describe transformations in the plane as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not.

Dilations

Rotations, Reflections, and Translations

Translations

G.G-CO.A.3: Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.

Reflections

Rotations, Reflections, and Translations

Similar Figures

G.G-CO.A.4: Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.

Circles

Rotations, Reflections, and Translations

Similar Figures

Translations

G.G-CO.A.5: Given a geometric figure and a rotation, reflection, or translation draw the transformed figure. Specify a sequence of transformations that will carry a given figure onto another.

Reflections

Rotations, Reflections, and Translations

Similar Figures

Translations

G.G-CO.B: Understand congruence in terms of rigid motions.

G.G-CO.B.6: Use geometric definitions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.

Absolute Value with Linear Functions

Circles

Dilations

Holiday Snowflake Designer

Reflections

Rotations, Reflections, and Translations

Similar Figures

Translations

G.G-CO.C: Prove geometric theorems.

G.G-CO.C.9: Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.

G.G-CO.C.10: Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangle are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.

Isosceles and Equilateral Triangles

Triangle Angle Sum

Triangle Inequalities

G.G-CO.C.11: Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and rectangles are parallelograms with congruent diagonals.

Parallelogram Conditions

Special Parallelograms

G.G-CO.D: Make geometric constructions.

G.G-CO.D.12: Make formal geometric constructions with a variety of tools and methods. Constructions include: copying segments; copying angles; bisecting segments; bisecting angles; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.

Constructing Congruent Segments and Angles

Constructing Parallel and Perpendicular Lines

Parallel, Intersecting, and Skew Lines

Segment and Angle Bisectors

G.G-CO.D.13: Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle; with a variety of tools and methods.

Concurrent Lines, Medians, and Altitudes

Inscribed Angles

G.G-SRT.A: Understand similarity in terms of similarity transformations.

G.G-SRT.A.1: Verify experimentally the properties of dilations given by a center and a scale factor:

G.G-SRT.A.1a: Dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.

G.G-SRT.A.1b: The dilation of a line segment is longer or shorter in the ratio given by the scale factor.

G.G-SRT.A.2: Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.

Circles

Dilations

Similar Figures

G.G-SRT.A.3: Use the properties of similarity transformations to establish the AA, SAS, and SSS criterion for two triangles to be similar.

G.G-SRT.B: Prove theorems involving similarity.

G.G-SRT.B.4: Prove theorems about triangles. Theorems include: an interior line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.

G.G-SRT.B.5: Use congruence and similarity criteria to prove relationships in geometric figures and solve problems utilizing real-world context.

Congruence in Right Triangles

Constructing Congruent Segments and Angles

Perimeters and Areas of Similar Figures

Proving Triangles Congruent

Similar Figures

Similarity in Right Triangles

G.G-SRT.C: Define trigonometric ratios and solve problems involving right triangles.

G.G-SRT.C.6: Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.

Sine, Cosine, and Tangent Ratios

G.G-SRT.C.8: Use trigonometric ratios (including inverse trigonometric ratios) and the Pythagorean Theorem to find unknown measurements in right triangles utilizing real-world context.

Cosine Function

Distance Formula

Pythagorean Theorem

Pythagorean Theorem with a Geoboard

Sine Function

Sine, Cosine, and Tangent Ratios

Tangent Function

G.G-C.A: Understand and apply theorems about circles.

G.G-C.A.2: Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.

Chords and Arcs

Circumference and Area of Circles

Inscribed Angles

G.G-C.A.3: Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.

Concurrent Lines, Medians, and Altitudes

Inscribed Angles

G.G-GPE.A: Translate between the geometric description and the equation for a conic section.

G.G-GPE.A.1: Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.

G.G-GMD.A: Explain volume formulas and use them to solve problems.

G.G-GMD.A.1: Analyze and verify the formulas for the volume of a cylinder, pyramid, and cone.

G.G-GMD.A.3: Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems utilizing real-world context.

Biconditional Statements

Conditional Statements

Estimating Population Size

Conditional Statements

Estimating Population Size

Biconditional Statements

Using Algebraic Expressions

Arithmetic Sequences

Arithmetic and Geometric Sequences

Geometric Sequences

Correlation last revised: 1/22/2020