A2.N: Number and Quantity

A2.N-CN: The Complex Number System

A2.N-CN.A: Perform arithmetic operations with complex numbers.

A2.N-CN.A.1: Apply the relation i² = -1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers. Write complex numbers in the form (a + bi) with a and b real.

Points in the Complex Plane
Roots of a Quadratic

A2.N-CN.C: Use complex numbers in polynomial identities and equations.

A2.N-CN.C.7: Solve quadratic equations with real coefficients that have complex solutions.

Points in the Complex Plane
Roots of a Quadratic

A2.A: Algebra

A2.A-SSE: Seeing Structure in Expressions

A2.A-SSE.A: Interpret the structure of expressions.

A2.A-SSE.A.2: Use structure to identify ways to rewrite polynomial and rational expressions. Focus on polynomial operations and factoring patterns.

Modeling the Factorization of ax2+bx+c
Modeling the Factorization of x2+bx+c
Simplifying Algebraic Expressions I
Simplifying Algebraic Expressions II

A2.A-APR: Arithmetic with Polynomials and Rational Expressions

A2.A-APR.B: Understand the relationship between zeros and factors of polynomials.

A2.A-APR.B.2: Know and apply the Remainder and Factor Theorem: For a polynomial p(x) and a number a, the remainder on division by (x - a) is p(a), so p(a) = 0 if and only if (x - a) is a factor of p(x).

Dividing Polynomials Using Synthetic Division

A2.A-APR.B.3: Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. Focus on quadratic, cubic, and quartic polynomials including polynomials for which factors are not provided.

Graphs of Polynomial Functions
Modeling the Factorization of x2+bx+c
Polynomials and Linear Factors
Quadratics in Factored Form
Quadratics in Vertex Form

A2.A-APR.C: Use polynomial identities to solve problems.

A2.A-APR.C.4: Prove polynomial identities and use them to describe numerical relationships.

Factoring Special Products

A2.A-CED: Creating Equations

A2.A-CED.A: Create equations that describe numbers or relationships.

A2.A-CED.A.1: Create equations and inequalities in one variable and use them to solve problems. Include problem-solving opportunities utilizing real-world context. Focus on equations and inequalities arising from linear, quadratic, rational, and exponential functions.

Absolute Value Equations and Inequalities
Arithmetic Sequences
Exploring Linear Inequalities in One Variable
Geometric Sequences
Linear Inequalities in Two Variables
Modeling One-Step Equations
Modeling and Solving Two-Step Equations
Solving Equations on the Number Line
Solving Linear Inequalities in One Variable
Solving Two-Step Equations
Using Algebraic Equations

A2.A-REI: Reasoning with Equations and Inequalities

A2.A-REI.A: Understand solving equations as a process of reasoning and explain the reasoning.

A2.A-REI.A.1: Explain each step in solving an equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method. Extend from quadratic equations to rational and radical equations.

Modeling One-Step Equations
Modeling and Solving Two-Step Equations
Solving Algebraic Equations II
Solving Equations on the Number Line
Solving Two-Step Equations

A2.A-REI.A.2: Solve rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.

Radical Functions

A2-A-REI.B: Solve equations and inequalities in one variable.

A2.A-REI.B.4: Fluently solve quadratic equations in one variable. Solve quadratic equations by inspection (e.g., for x² = 49), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b.

Modeling the Factorization of x2+bx+c
Points in the Complex Plane
Roots of a Quadratic

A2-A-REI.D: Represent and solve equations and inequalities graphically.

A2.A-REI.D.11: Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately (e.g., using technology to graph the functions, make tables of values, or find successive approximations). Include problems in real-world context. Extend from linear, quadratic, and exponential functions to cases where f(x) and/or g(x) are polynomial, rational, exponential, and logarithmic functions.

Cat and Mouse (Modeling with Linear Systems)
Point-Slope Form of a Line
Solving Equations by Graphing Each Side
Solving Linear Systems (Matrices and Special Solutions)
Solving Linear Systems (Slope-Intercept Form)
Standard Form of a Line

A2.F: Functions

A2.F-IF: Interpreting Functions

A2.F-IF.B: Interpret functions that arise in applications in terms of the context.

A2.F-IF.B.4: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Include problem-solving opportunities utilizing a real-world context. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Functions include linear, quadratic, exponential, polynomial, logarithmic, rational, sine, cosine, tangent, square root, cube root and piecewise-defined functions.

Absolute Value with Linear Functions
Cat and Mouse (Modeling with Linear Systems)
Cosine Function
Exponential Functions
General Form of a Rational Function
Graphs of Polynomial Functions
Linear Functions
Logarithmic Functions
Points, Lines, and Equations
Polynomials and Linear Factors
Quadratics in Factored Form
Quadratics in Polynomial Form
Quadratics in Vertex Form
Radical Functions
Rational Functions
Roots of a Quadratic
Sine Function
Slope-Intercept Form of a Line
Tangent Function
Translating and Scaling Sine and Cosine Functions

A2.F-IF.B.6: Calculate and interpret the average rate of change of a continuous function (presented symbolically or as a table) on a closed interval. Estimate the rate of change from a graph. Include problem-solving opportunities utilizing real-world context. Functions include linear, quadratic, exponential, polynomial, logarithmic, rational, sine, cosine, tangent, square root, cube root and piecewise-defined functions.

Cat and Mouse (Modeling with Linear Systems)
Compound Interest
Point-Slope Form of a Line
Slope
Slope-Intercept Form of a Line
Translating and Scaling Functions

A2.F-IF.C: Analyze functions using different representations.

A2.F-IF.C.7: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. Functions include linear, quadratic, exponential, polynomial, logarithmic, rational, sine, cosine, tangent, square root, cube root and piecewise-defined functions.

Absolute Value with Linear Functions
Addition and Subtraction of Functions
Arithmetic Sequences
Compound Interest
Cosine Function
Exponential Functions
General Form of a Rational Function
Graphs of Polynomial Functions
Introduction to Exponential Functions
Linear Functions
Logarithmic Functions
Point-Slope Form of a Line
Polynomials and Linear Factors
Quadratics in Factored Form
Quadratics in Polynomial Form
Quadratics in Vertex Form
Radical Functions
Rational Functions
Roots of a Quadratic
Sine Function
Slope-Intercept Form of a Line
Standard Form of a Line
Tangent Function
Translating and Scaling Functions
Translating and Scaling Sine and Cosine Functions
Zap It! Game

A2.F-IF.C.8: Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.

A2.F-IF.C.8b: Use the properties of exponents to interpret expressions for exponential functions and classify those functions as exponential growth or decay.

Compound Interest
Exponential Functions

A2.F-IF.C.9: Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions.). Functions include linear, quadratic, exponential, polynomial, logarithmic, rational, sine, cosine, tangent, square root, cube root and piecewise-defined functions.

Exponential Functions
General Form of a Rational Function
Graphs of Polynomial Functions
Introduction to Exponential Functions
Linear Functions
Logarithmic Functions
Quadratics in Factored Form
Quadratics in Polynomial Form
Quadratics in Vertex Form
Radical Functions
Rational Functions
Slope-Intercept Form of a Line
Translating and Scaling Functions

A2.F-BF: Building Functions

A2.F-BF.A: Build a function that models a relationship between two quantities.

A2.F-BF.A.1: Write a function that describes a relationship between two quantities. Functions include linear, quadratic, exponential, polynomial, logarithmic, rational, sine, cosine, tangent, square root, cube root and piecewise-defined functions. Include problem-solving opportunities utilizing real-world context.

A2.F-BF.A.1a: Determine an explicit expression, a recursive process, or steps for calculation from a context.

Arithmetic Sequences
Arithmetic and Geometric Sequences
Geometric Sequences

A2.F-BF.A.1b: Combine function types using arithmetic operations and function composition.

Addition and Subtraction of Functions

A2.F-BF.A.2: Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.

Arithmetic Sequences
Arithmetic and Geometric Sequences
Geometric Sequences

A2.F-BF.B: Build new functions from existing functions.

A2.F-BF.B.3: Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. Functions include linear, quadratic, exponential, polynomial, logarithmic, rational, sine, cosine, tangent, square root, cube root and piecewise-defined functions.

Absolute Value with Linear Functions
Exponential Functions
General Form of a Rational Function
Introduction to Exponential Functions
Quadratics in Vertex Form
Rational Functions
Translating and Scaling Functions
Translating and Scaling Sine and Cosine Functions
Translations
Zap It! Game

A2.F-BF.B.4: Find inverse functions.

A2.F-BF.B.4a: Understand that an inverse function can be obtained by expressing the dependent variable of one function as the independent variable of another, recognizing that functions f and g are inverse functions if and only if f(x) = y and g(y) = x for all values of x in the domain of f and all values of y in the domain of g.

Logarithmic Functions

A2.F-BF.B.4b: Understand that if a function contains a point (a, b), then the graph of the inverse relation of the function contains the point (b, a).

Logarithmic Functions

A2.F-LE: Linear, Quadratic, and Exponential Models

A2.F-LE.A: Construct and compare linear, quadratic, and exponential models and solve problems.

A2.F-LE.A.4: For exponential models, express as a logarithm the solution to ab to the ct power = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithms that are not readily found by hand or observation using technology.

Logarithmic Functions

A2.F-LE.B: Interpret expressions for functions in terms of the situation they model.

A2.F-LE.B.5: Interpret the parameters in an exponential function with rational exponents utilizing real-world context.

Arithmetic Sequences
Compound Interest
Introduction to Exponential Functions

A2.F-TF: Trigonometric Functions

A2.F-TF.A: Extend the domain of trigonometric functions using the unit circle.

A2.F-TF.A.2: Explain how the unit circle in the coordinate plane enables the extension of sine and cosine functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.

Cosine Function
Sine Function
Tangent Function

A2.F-TF.B: Model periodic phenomena with trigonometric functions.

A2.F-TF.B.5: Create and interpret sine, cosine and tangent functions that model periodic phenomena with specified amplitude, frequency, and midline.

Translating and Scaling Functions
Translating and Scaling Sine and Cosine Functions

A2.F-TF.C: Apply trigonometric identities.

A2.F-TF.C.8: Use the Pythagorean identity sin²(theta) + cos²(theta) = 1 and the quadrant of the angle theta to find sin(theta), cos(theta), or tan(theta) given sin(theta) or cos(theta).

Simplifying Trigonometric Expressions
Sine, Cosine, and Tangent Ratios

A2.S: Statistics and Probability

A2.S-ID: Interpreting Categorical and Quantitative Data

A2.S-ID.A: Summarize, represent, and interpret data on a single count or measurement variable.

A2.S-ID.A.4: Use the mean and standard deviation of a data set to fit it to a normal curve, and use properties of the normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, or tables to estimate areas under the normal curve.

Polling: City
Populations and Samples
Real-Time Histogram

A2.S-ID.B: Summarize, represent, and interpret data on two categorical and quantitative variables.

A2.S-ID.B.6: Represent data of two quantitative variables on a scatter plot, and describe how the quantities are related. Extend to polynomial and exponential models.

A2.S-ID.B.6a: Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context.

Correlation
Least-Squares Best Fit Lines
Solving Using Trend Lines
Trends in Scatter Plots
Zap It! Game

A2.S-IC: Making Inferences and Justifying Conclusions

A2.S-IC.A: Understand and evaluate random processes underlying statistical experiments.

A2.S-IC.A.1: Understand statistics as a process for making inferences about population parameters based on a random sample from that population.

Polling: City
Polling: Neighborhood
Populations and Samples

A2.S-IC.A.2: Explain whether a specified model is consistent with results from a given data-generating process.

Polling: City
Polling: Neighborhood
Populations and Samples

A2.S-IC.B: Make inferences and justify conclusions from experiments, and observational studies.

A2.S-IC.B.3: Recognize the purposes of and differences between designed experiments, sample surveys and observational studies.

Polling: Neighborhood

A2.S-IC.B.4: Use data from a sample survey to estimate a population mean or proportion; recognize that estimates are unlikely to be correct and the estimates will be more precise with larger sample sizes.

Polling: City

A2.S-CP: Conditional Probability and the Rules of Probability

A2.S-CP.A: Understand independence and conditional probability and use them to interpret data.

A2.S-CP.A.3: Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.

Independent and Dependent Events

A2.S-CP.A.4: Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities.

Histograms

A2.S-CP.A.5: Recognize and explain the concepts of conditional probability and independence utilizing real-world context.

Independent and Dependent Events

A2.S-CP.B: Use the rules of probability to compute probabilities of compound events in a uniform probability model.

A2.S-CP.B.6: Use Bayes Rule to find the conditional probability of A given B as the fraction of B’s outcomes that also belong to A, and interpret the answer in terms of the model.

Independent and Dependent Events

A2.S-CP.B.8: Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P(B|A) = P(B)P(A|B), and interpret the answer in terms of the model.

Independent and Dependent Events

A2.MP: Standards for Mathematical Practice

A2.MP.1: Make sense of problems and persevere in solving them.

Biconditional Statements
Conditional Statements
Estimating Population Size

A2.MP.2: Reason abstractly and quantitatively.

Conditional Statements
Estimating Population Size

A2.MP.3: Construct viable arguments and critique the reasoning of others.

Biconditional Statements

A2.MP.6: Attend to precision.

Biconditional Statements
Using Algebraic Expressions

A2.MP.8: Look for and express regularity in repeated reasoning.

Arithmetic Sequences
Arithmetic and Geometric Sequences
Geometric Sequences

Correlation last revised: 5/20/2019

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.