Curriculum Framework

AR.Math.Content.3.OA.A.1: Interpret products of whole numbers (e.g., interpret 5 × 7 as the total number of objects in 5 groups of 7 objects each).

Chocomatic (Multiplication, Arrays, and Area)

Critter Count (Modeling Multiplication)

AR.Math.Content.3.OA.A.2: Interpret whole-number quotients of whole numbers (e.g., interpret 56 ÷ 8 as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each).

No Alien Left Behind (Division with Remainders)

AR.Math.Content.3.OA.A.3: Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).

Chocomatic (Multiplication, Arrays, and Area)

Critter Count (Modeling Multiplication)

No Alien Left Behind (Division with Remainders)

AR.Math.Content.3.OA.A.4: Determine the unknown whole number in a multiplication or division equation relating three whole numbers.

Factor Trees (Factoring Numbers)

AR.Math.Content.3.OA.B.6: Understand division as an unknown-factor problem.

Factor Trees (Factoring Numbers)

AR.Math.Content.3.OA.C.7: Using computational fluency, multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that 8 × 5 = 40, one knows 40 ÷ 5 = 8) or properties of operations. By the end of Grade 3, automatically (fact fluency) recall all products of two one-digit numbers.

Critter Count (Modeling Multiplication)

Factor Trees (Factoring Numbers)

Multiplying Decimals (Area Model)

No Alien Left Behind (Division with Remainders)

Pattern Flip (Patterns)

AR.Math.Content.3.OA.D.8: Solve two-step word problems using the four operations, and be able to: Represent these problems using equations with a letter standing for unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.

Cargo Captain (Multi-digit Subtraction)

Critter Count (Modeling Multiplication)

No Alien Left Behind (Division with Remainders)

Number Line Frog Hop (Addition and Subtraction)

AR.Math.Content.3.OA.D.9: Identify arithmetic patterns (including, but not limited to, patterns in the addition table or multiplication table), and explain them using properties of operations.

Function Machines 1 (Functions and Tables)

Pattern Flip (Patterns)

AR.Math.Content.3.NBT.A.1: Use place value understanding to round whole numbers to the nearest 10 or 100.

Rounding Whole Numbers (Number Line)

AR.Math.Content.3.NBT.A.2: Using computational fluency, add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

Adding Fractions (Fraction Tiles)

Adding Whole Numbers and Decimals (Base-10 Blocks)

Cargo Captain (Multi-digit Subtraction)

Fractions Greater than One (Fraction Tiles)

Number Line Frog Hop (Addition and Subtraction)

Rounding Whole Numbers (Number Line)

Subtracting Whole Numbers and Decimals (Base-10 Blocks)

Target Sum Card Game (Multi-digit Addition)

AR.Math.Content.3.NBT.A.4: Understand that the four digits of a four-digit number represent amounts of thousands, hundreds, tens, and ones (e.g., 7,706 can be portrayed in a variety of ways according to place value strategies). Understand the following as special cases: 1,000 can be thought of as a group of ten hundreds---called a thousand. The numbers 1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000 refer to one, two, three, four, five, six, seven, eight, or nine thousands.

Cannonball Clowns (Number Line Estimation)

Rounding Whole Numbers (Number Line)

Target Sum Card Game (Multi-digit Addition)

AR.Math.Content.3.NBT.A.5: Read and write numbers to 10,000 using base-ten numerals, number names, and expanded form(s).

Cannonball Clowns (Number Line Estimation)

AR.Math.Content.3.NF.A.1: Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned into b equal parts. Understand a fraction a/b as the quantity formed by a parts of size 1/b.

Equivalent Fractions (Fraction Tiles)

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

Fraction Garden (Comparing Fractions)

Fraction, Decimal, Percent (Area and Grid Models)

Modeling Fractions (Area Models)

Toy Factory (Set Models of Fractions)

AR.Math.Content.3.NF.A.2: Understand a fraction as a number on the number line; represent fractions on a number line diagram. Represent a fraction 1/b on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size 1/b and that the endpoint of the part based at 0 locates the number 1/b on the number line. Represent a fraction a/b on a number line diagram by marking off a lengths 1/b from 0. Recognize that the resulting interval has size a/b and that its endpoint locates the number a/b on the number line.

Fraction Garden (Comparing Fractions)

Fractions Greater than One (Fraction Tiles)

Modeling Fractions (Area Models)

AR.Math.Content.3.NF.A.3: Explain equivalence of fractions in special cases and compare fractions by reasoning about their size. Understand two fractions as equivalent (equal) if they are the same size or the same point on a number line. Recognize and generate simple equivalent fractions (e.g., 1/2 = 2/4, 4/6 = 2/3). Explain why the fractions are equivalent (e.g., by using a visual fraction model). Express whole numbers as fractions and recognize fractions that are equivalent to whole numbers. (e.g., Express 3 in the form 3 = 3/1; recognize that 6/1 = 6; locate 4/4 and 1 at the same point of a number line diagram.) Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols (>, =, <) and justify the conclusions (e.g., by using a visual fraction model).

Adding Fractions (Fraction Tiles)

Equivalent Fractions (Fraction Tiles)

Factor Trees (Factoring Numbers)

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

Fraction Garden (Comparing Fractions)

Fractions Greater than One (Fraction Tiles)

Modeling Fractions (Area Models)

Toy Factory (Set Models of Fractions)

AR.Math.Content.3.MD.A.1: Tell time using the terms quarter and half as related to the hour. (e.g., quarter-past 3:00, half-past 4:00, and quarter till 3:00). Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes. (e.g., by representing the problem on a number line diagram).

AR.Math.Content.3.MD.B.3: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. (e.g., Draw a bar graph in which each square in the bar graph might represent 5 pets.) Solve one- and two-step “how many more” and “how many less” problems using information presented in scaled picture graphs and scaled bar graphs.

Forest Ecosystem

Mascot Election (Pictographs and Bar Graphs)

Reaction Time 1 (Graphs and Statistics)

AR.Math.Content.3.MD.B.4: Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units— whole numbers, halves, or quarters.

Reaction Time 2 (Graphs and Statistics)

AR.Math.Content.3.MD.C.5: Recognize area as an attribute of plane figures and understand concepts of area measurement. A square with side length 1 unit, called “a unit square,” is said to have “one square unit” of area, and can be used to measure area. A plane figure, which can be covered without gaps or overlaps by n unit squares, is said to have an area of n square units.

Balancing Blocks (Volume)

Chocomatic (Multiplication, Arrays, and Area)

Fido's Flower Bed (Perimeter and Area)

AR.Math.Content.3.MD.C.6: Measure areas by counting unit squares (square cm, square m, square in, square ft, and improvised units).

Chocomatic (Multiplication, Arrays, and Area)

Fido's Flower Bed (Perimeter and Area)

AR.Math.Content.3.MD.C.7: Relate area to the operations of multiplication and addition. Find the area of a rectangle with whole-number side lengths by tiling it and show that the area is the same as would be found by multiplying the side lengths. Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning. Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths a and b + c is the sum of a × b and a × c. Use area models to represent the distributive property in mathematical reasoning. Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems.

Balancing Blocks (Volume)

Chocomatic (Multiplication, Arrays, and Area)

Fido's Flower Bed (Perimeter and Area)

AR.Math.Content.3.MD.D.8: Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.

Fido's Flower Bed (Perimeter and Area)

AR.Math.Content.3.G.A.2: Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole.

Fraction Artist 1 (Area Models of Fractions)

Correlation last revised: 4/4/2018

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.