WV--College- and Career-Readiness Standards

ICD.M.3HS.4: Recognize the purposes of and differences among sample surveys, experiments and observational studies; explain how randomization relates to each.

Polling: City

Polling: Neighborhood

ICD.M.3HS.5: Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.

Estimating Population Size

Polling: City

Polling: Neighborhood

ICD.M.3HS.6: Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.

Real-Time Histogram

Sight vs. Sound Reactions

ICD.M.3HS.8: Use probabilities to make fair decisions (e.g., drawing by lots or using a random number generator).

Probability Simulations

Theoretical and Experimental Probability

ICD.M.3HS.9: Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, and/or pulling a hockey goalie at the end of a game).

Estimating Population Size

Probability Simulations

Theoretical and Experimental Probability

PRR.M.3HS.18: Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity (x ²+ y²)² = (x² – y²)² + (2xy)² can be used to generate Pythagorean triples.

PRR.M.3HS.19: Know and apply the Binomial Theorem for the expansion of (x + y)ⁿ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal’s Triangle.

PRR.M.3HS.23: Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately (e.g., using technology to graph the functions, make tables of values or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential and logarithmic functions.

Cat and Mouse (Modeling with Linear Systems)

Point-Slope Form of a Line

Solving Equations by Graphing Each Side

Solving Linear Systems (Matrices and Special Solutions)

Solving Linear Systems (Slope-Intercept Form)

Standard Form of a Line

PRR.M.3HS.24: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. Graph polynomial functions, identifying zeros when suitable factorizations are available and showing end behavior.

Absolute Value with Linear Functions

Exponential Functions

Graphs of Polynomial Functions

Introduction to Exponential Functions

Logarithmic Functions

Quadratics in Factored Form

Quadratics in Polynomial Form

Quadratics in Vertex Form

Radical Functions

MM.M.3HS.31: Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.

Absolute Value Equations and Inequalities

Absolute Value with Linear Functions

Arithmetic Sequences

Compound Interest

Exploring Linear Inequalities in One Variable

Exponential Functions

General Form of a Rational Function

Geometric Sequences

Introduction to Exponential Functions

Linear Functions

Linear Inequalities in Two Variables

Logarithmic Functions

Modeling One-Step Equations

Modeling and Solving Two-Step Equations

Quadratics in Factored Form

Quadratics in Polynomial Form

Quadratics in Vertex Form

Rational Functions

Slope-Intercept Form of a Line

Solving Equations on the Number Line

Solving Linear Inequalities in One Variable

Solving Two-Step Equations

Translating and Scaling Functions

Using Algebraic Equations

MM.M.3HS.32: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

2D Collisions

Air Track

Compound Interest

Determining a Spring Constant

Golf Range

Points, Lines, and Equations

Slope-Intercept Form of a Line

MM.M.3HS.33: Represent constraints by equations or inequalities and by systems of equations and/or inequalities and interpret solutions as viable or non-viable options in a modeling context. (e.g., Represent inequalities describing nutritional and cost constraints on combinations of different foods.)

Linear Inequalities in Two Variables

Linear Programming

Solving Linear Systems (Standard Form)

Systems of Linear Inequalities (Slope-intercept form)

MM.M.3HS.34: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (e.g., Rearrange Ohm’s law V = IR to highlight resistance R.)

Area of Triangles

Solving Formulas for any Variable

MM.M.3HS.38: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

MM.M.3HS.38.a: Graph square root, cube root and piecewise-defined functions, including step functions and absolute value functions.

Absolute Value with Linear Functions

Radical Functions

Translating and Scaling Functions

MM.M.3HS.38.b: Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline and amplitude.

Cosine Function

Sine Function

Tangent Function

Translating and Scaling Sine and Cosine Functions

MM.M.3HS.40: Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). (e.g., Given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.)

General Form of a Rational Function

Graphs of Polynomial Functions

Linear Functions

Logarithmic Functions

Quadratics in Polynomial Form

Quadratics in Vertex Form

Correlation last revised: 4/4/2018