UT--Core Standards

8.MP.1: Make sense of problems and persevere in solving them.

8.MP.1.a: Explain the meaning of a problem and look for entry points to its solution. Analyze givens, constraints, relationships, and goals. Make conjectures about the form and meaning of the solution, plan a solution pathway, and continually monitor progress asking, “Does this make sense?” Consider analogous problems, make connections between multiple representations, identify the correspondence between different approaches, look for trends, and transform algebraic expressions to highlight meaningful mathematics. Check answers to problems using a different method.

Biconditional Statements

Estimating Population Size

Improper Fractions and Mixed Numbers

Linear Inequalities in Two Variables

Modeling One-Step Equations

Multiplying with Decimals

Pattern Finder

Solving Equations on the Number Line

Using Algebraic Equations

Using Algebraic Expressions

8.MP.3: Construct viable arguments and critique the reasoning of others.

8.MP.3.a: Understand and use stated assumptions, definitions, and previously established results in constructing arguments. Make conjectures and build a logical progression of statements to explore the truth of their conjectures. Justify conclusions and communicate them to others. Respond to the arguments of others by listening, asking clarifying questions, and critiquing the reasoning of others.

8.MP.4: Model with mathematics.

8.MP.4.a: Apply mathematics to solve problems arising in everyday life, society, and the workplace. Make assumptions and approximations, identifying important quantities to construct a mathematical model. Routinely interpret mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

8.MP.7: Look for and make use of structure.

8.MP.7.a: Look closely at mathematical relationships to identify the underlying structure by recognizing a simple structure within a more complicated structure. See complicated things, such as some algebraic expressions, as single objects or as being composed of several objects.

Arithmetic Sequences

Finding Patterns

Function Machines 2 (Functions, Tables, and Graphs)

Geometric Sequences

Pattern Finder

8.MP.8: Look for and express regularity in repeated reasoning.

8.MP.8.a: Notice if reasoning is repeated, and look for both generalizations and shortcuts. Evaluate the reasonableness of intermediate results by maintaining oversight of the process while attending to the details.

Arithmetic Sequences

Arithmetic and Geometric Sequences

Geometric Sequences

8.NS.1: Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers, show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.

Part-to-part and Part-to-whole Ratios

Percents, Fractions, and Decimals

8.NS.2: Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π²).

Circumference and Area of Circles

Ordering and Approximating Square Roots

8.NS.3: Understand how to perform operations and simplify radicals with emphasis on square roots.

Operations with Radical Expressions

Simplifying Radical Expressions

8.EE.1: Know and apply the properties of integer exponents to generate equivalent numerical expressions.

Dividing Exponential Expressions

Exponents and Power Rules

Multiplying Exponential Expressions

Simplifying Algebraic Expressions II

8.EE.2: Use square root and cube root symbols to represent solutions to equations of the form x² = p and x³ = p, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that √2 is irrational.

Operations with Radical Expressions

Simplifying Radical Expressions

Square Roots

8.EE.3: Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other.

Unit Conversions 2 - Scientific Notation and Significant Digits

8.EE.4: Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.

Unit Conversions

Unit Conversions 2 - Scientific Notation and Significant Digits

8.EE.5: Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.

Direct and Inverse Variation

Distance-Time Graphs

Distance-Time and Velocity-Time Graphs

8.EE.6: Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b.

Linear Inequalities in Two Variables

Point-Slope Form of a Line

Points, Lines, and Equations

Slope-Intercept Form of a Line

Standard Form of a Line

8.EE.7: Solve linear equations and inequalities in one variable.

8.EE.7.a: Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form x = a, a = a, or a = b results (where a and b are different numbers).

Modeling One-Step Equations

Modeling and Solving Two-Step Equations

Solving Algebraic Equations II

Solving Equations on the Number Line

Solving Two-Step Equations

8.EE.7.b: Solve single-variable linear equations and inequalities with rational number coefficients, including equations and inequalities whose solutions require expanding expressions using the distributive property and collecting like terms.

Absolute Value Equations and Inequalities

Compound Inequalities

Exploring Linear Inequalities in One Variable

Linear Inequalities in Two Variables

Modeling One-Step Equations

Modeling and Solving Two-Step Equations

Solving Algebraic Equations II

Solving Equations on the Number Line

Solving Linear Inequalities in One Variable

Solving Two-Step Equations

8.EE.7.c: Solve single-variable absolute value equations.

Absolute Value Equations and Inequalities

8.EE.8: Analyze and solve pairs of simultaneous linear equations.

8.EE.8.a: Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.

Solving Linear Systems (Slope-Intercept Form)

Solving Linear Systems (Standard Form)

8.EE.8.b: Solve systems of two linear equations in two variables graphically, approximating when solutions are not integers and estimate solutions by graphing the equations. Solve simple cases by inspection.

Cat and Mouse (Modeling with Linear Systems)

Solving Equations by Graphing Each Side

Solving Linear Systems (Matrices and Special Solutions)

Solving Linear Systems (Slope-Intercept Form)

Solving Linear Systems (Standard Form)

8.EE.8.c: Solve real-world and mathematical problems leading to two linear equations in two variables graphically.

Cat and Mouse (Modeling with Linear Systems)

Solving Equations by Graphing Each Side

Solving Linear Systems (Matrices and Special Solutions)

Solving Linear Systems (Slope-Intercept Form)

Solving Linear Systems (Standard Form)

8.F.1: Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.

Function Machines 1 (Functions and Tables)

Function Machines 2 (Functions, Tables, and Graphs)

Introduction to Functions

Points, Lines, and Equations

8.F.2: Compare properties of two functions, each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).

Graphs of Polynomial Functions

Linear Functions

Quadratics in Polynomial Form

8.F.3: Interpret the equation y = mx + b as defining a linear function whose graph is a straight line; give examples of functions that are not linear.

Absolute Value with Linear Functions

Linear Functions

Point-Slope Form of a Line

Points, Lines, and Equations

Slope-Intercept Form of a Line

Standard Form of a Line

8.F.4: Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

Arithmetic Sequences

Cat and Mouse (Modeling with Linear Systems)

Compound Interest

Function Machines 1 (Functions and Tables)

Function Machines 2 (Functions, Tables, and Graphs)

Function Machines 3 (Functions and Problem Solving)

Linear Functions

Points, Lines, and Equations

Slope-Intercept Form of a Line

Translating and Scaling Functions

8.F.5: Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

Distance-Time Graphs

Distance-Time and Velocity-Time Graphs

Linear Functions

8.G.1: Verify experimentally the properties of rotations, reflections, and translations:

8.G.1.a: Lines are taken to lines, and line segments to line segments of the same length.

Reflections

Rotations, Reflections, and Translations

Similar Figures

Translations

8.G.1.b: Angles are taken to angles of the same measure.

Reflections

Rotations, Reflections, and Translations

Similar Figures

Translations

8.G.1.c: Parallel lines are taken to parallel lines.

Reflections

Rotations, Reflections, and Translations

Similar Figures

Translations

8.G.3: Observe that orientation of the plane is preserved in rotations and translations, but not with reflections. Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.

Dilations

Rock Art (Transformations)

Rotations, Reflections, and Translations

Translations

8.G.5: Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.

Investigating Angle Theorems

Similar Figures

Triangle Angle Sum

8.G.6: Explore and explain proofs of the Pythagorean Theorem and its converse.

Pythagorean Theorem

Pythagorean Theorem with a Geoboard

8.G.7: Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.

Pythagorean Theorem

Pythagorean Theorem with a Geoboard

8.G.8: Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.

Distance Formula

Pythagorean Theorem

8.G.9: Know the formulas for the volumes of cones, cylinders, and spheres, and use them to solve real-world and mathematical problems.

Prisms and Cylinders

Pyramids and Cones

8.SP.1: Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.

Correlation

Solving Using Trend Lines

Trends in Scatter Plots

8.SP.2: Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.

Correlation

Solving Using Trend Lines

8.SP.3: Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept.

Correlation last revised: 4/4/2018

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.