Curriculum Framework

MO.1.AIII.3: Add, subtract, and multiply matrices of appropriate dimensions

MO.1.AIII.5: Understand that the zero and identity matrices play a role in matrix addition and multiplication similar to the role of 0 and 1 in the real numbers; the determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse

Solving Linear Systems (Matrices and Special Solutions)

MO.1.AIII.8: Represent a system of linear equations as a single matrix equation in a vector variable

Solving Linear Systems (Matrices and Special Solutions)

MO.1.AIII.9: Find the inverse of a matrix if it exists; use the inverse to solve systems of linear equations using technology for matrices of dimension 3 x 3 or greater

Solving Linear Systems (Matrices and Special Solutions)

CS.2.AIII.1: Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers

Points in the Complex Plane

Roots of a Quadratic

CS.2.AIII.2: Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant; find the equations for the asymptotes of a hyperbola

CS.2.AIII.3: Complete the square in order to generate an equivalent form of an equation for a conic section; use that equivalent form to identify key characteristics of the conic section

CS.2.AIII.4: Identify, graph, write, and analyze equations of each type of conic section, using properties such as symmetry, intercepts, foci, asymptotes, and eccentricity, and using technology when appropriate

Addition and Subtraction of Functions

Circles

Ellipses

Hyperbolas

Parabolas

CS.2.AIII.5: Solve systems of equations and inequalities involving conics and other types of equations, with and without appropriate technology

Linear Programming

Solving Equations by Graphing Each Side

FOP.3.AIII.1: Compose functions (e.g., if T(y)is the temperature in the atmosphere as a function of height, and h(t)is the height of a weather balloon as a function of time, then T(h(t)) is the temperature at the location of the weather balloon as a function of time)

Function Machines 1 (Functions and Tables)

FOP.3.AIII.3: Read values of an inverse function from a graph or a table, given that the function has an inverse

Function Machines 3 (Functions and Problem Solving)

Logarithmic Functions

FOP.3.AIII.5: Combine standard function types using arithmetic operations (e.g., build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential and relate these functions to the model)

Addition and Subtraction of Functions

FOP.3.AIII.6: Understand the inverse relationship between exponents and logarithms; use this relationship to solve problems involving logarithms and exponents

FOP.3.AIII.7: Graph transformations of functions including quadratic, absolute value, square root, cube root, cubic, and step functions; graph piece-wise defined functions including these transformations

Absolute Value with Linear Functions

Exponential Functions

Translating and Scaling Functions

Translations

Zap It! Game

IF.4.AIII.1: Graph rational functions identifying zeros and asymptotes when suitable factorizations are available; show end behavior

General Form of a Rational Function

Rational Functions

IF.4.AIII.2: Analyze and interpret polynomial functions numerically, graphically, and algebraically, identifying key characteristics such as intercepts, end behavior, domain and range, relative and absolute maximum and minimum, as well as intervals over which the function increases and decreases

Graphs of Polynomial Functions

Polynomials and Linear Factors

Quadratics in Factored Form

IF.4.AIII.3: Analyze and interpret rational functions numerically, graphically, and algebraically, identifying key characteristics such as asymptotes (vertical, horizontal, and slant), end behavior, point discontinuities, intercepts, and domain and range

General Form of a Rational Function

Rational Functions

IF.4.AIII.4: Analyze and interpret exponential functions numerically, graphically, and algebraically, identifying key characteristics such as asymptotes, end behavior, intercepts, and domain and range

Exponential Functions

Introduction to Exponential Functions

Logarithmic Functions

IF.4.AIII.5: Analyze and interpret logarithmic functions numerically, graphically, and algebraically, identifying key characteristics such as asymptotes, end behavior, intercepts, and domain and range

SS.5.AIII.1: Write arithmetic and geometric sequences both recursively and with an explicit formula; translate between the two forms

Arithmetic Sequences

Arithmetic and Geometric Sequences

Geometric Sequences

SS.5.AIII.2: Use arithmetic and geometric sequences both recursively and with an explicit formula to model situations

Arithmetic Sequences

Arithmetic and Geometric Sequences

Geometric Sequences

Correlation last revised: 1/19/2017