GA--Standards of Excellence

MGSE8.NS.2: Use rational approximation of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line, and estimate the value of expressions (e.g., estimate π² to the nearest tenth)

Circumference and Area of Circles

Square Roots

MGSE8.EE.1: Know and apply the properties of integer exponents to generate equivalent numerical expressions.

Dividing Exponential Expressions

Exponents and Power Rules

Multiplying Exponential Expressions

Simplifying Algebraic Expressions II

MGSE8.EE.2: Use square root and cube root symbols to represent solutions to equations. Recognize that x² = p (where p is a positive rational number and lxl ≤ 25) has 2 solutions and x³ = p (where p is a negative or positive rational number and lxl ≤ 10) has one solution. Evaluate square roots of perfect squares ≤ 625 and cube roots of perfect cubes ≥ -1000 and ≤ 1000.

Operations with Radical Expressions

Simplifying Radical Expressions

Square Roots

MGSE8.EE.3: Use numbers expressed in scientific notation to estimate very large or very small quantities, and to express how many times as much one is than the other.

Number Systems

Unit Conversions

Unit Conversions 2 - Scientific Notation and Significant Digits

MGSE8.EE.4: Add, subtract, multiply and divide numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Understand scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g. use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology (e.g. calculators).

Unit Conversions

Unit Conversions 2 - Scientific Notation and Significant Digits

MGSE8.EE.5: Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.

Direct and Inverse Variation

Distance-Time Graphs

Distance-Time and Velocity-Time Graphs

MGSE8.EE.6: Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b.

Linear Inequalities in Two Variables

Point-Slope Form of a Line

Points, Lines, and Equations

Slope-Intercept Form of a Line

Standard Form of a Line

MGSE8.EE.7a: Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form x = a, a = a, or a = b results (where a and b are different numbers).

Modeling One-Step Equations

Modeling and Solving Two-Step Equations

Solving Algebraic Equations II

Solving Equations by Graphing Each Side

Solving Equations on the Number Line

Solving Two-Step Equations

MGSE8.EE.7b: Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.

Modeling and Solving Two-Step Equations

Solving Algebraic Equations II

Solving Equations on the Number Line

Solving Two-Step Equations

MGSE8.EE.8a: Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.

Solving Linear Systems (Slope-Intercept Form)

Solving Linear Systems (Standard Form)

MGSE8.EE.8b: Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection.

Solving Linear Systems (Slope-Intercept Form)

Solving Linear Systems (Standard Form)

MGSE8.EE.8c: Solve real-world and mathematical problems leading to two linear equations in two variables

Cat and Mouse (Modeling with Linear Systems)

Solving Equations by Graphing Each Side

Solving Linear Systems (Matrices and Special Solutions)

Solving Linear Systems (Slope-Intercept Form)

Solving Linear Systems (Standard Form)

MGSE8.F.1: Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.

Function Machines 1 (Functions and Tables)

Function Machines 2 (Functions, Tables, and Graphs)

Introduction to Functions

Points, Lines, and Equations

MGSE8.F.3: Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear.

Absolute Value with Linear Functions

Linear Functions

Point-Slope Form of a Line

Points, Lines, and Equations

Slope-Intercept Form of a Line

Standard Form of a Line

MGSE8.F.4: Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

Arithmetic Sequences

Cat and Mouse (Modeling with Linear Systems)

Compound Interest

Function Machines 1 (Functions and Tables)

Function Machines 2 (Functions, Tables, and Graphs)

Function Machines 3 (Functions and Problem Solving)

Linear Functions

Points, Lines, and Equations

Slope-Intercept Form of a Line

Translating and Scaling Functions

MGSE8.F.5: Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

Distance-Time Graphs

Distance-Time and Velocity-Time Graphs

Linear Functions

MGSE8.G.1: Verify experimentally the congruence properties of rotations, reflections, and translations: lines are taken to lines and line segments to line segments of the same length; angles are taken to angles of the same measure; parallel lines are taken to parallel lines.

Circles

Reflections

Rock Art (Transformations)

Rotations, Reflections, and Translations

Similar Figures

Translations

MGSE8.G.3: Describe the effect of dilations, translations, rotations and reflections on two-dimensional figures using coordinates.

Dilations

Rock Art (Transformations)

Rotations, Reflections, and Translations

Translations

MGSE8.G.5: Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.

Investigating Angle Theorems

Similar Figures

Triangle Angle Sum

MGSE8.G.6: Explain a proof of the Pythagorean Theorem and its converse.

Pythagorean Theorem

Pythagorean Theorem with a Geoboard

MGSE8.G.7: Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.

Pythagorean Theorem

Pythagorean Theorem with a Geoboard

MGSE8.G.8: Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.

Distance Formula

Pythagorean Theorem

MGSE8.G.9: Apply the formulas for the volume of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.

Prisms and Cylinders

Pyramids and Cones

MGSE8.SP.1: Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.

Correlation

Solving Using Trend Lines

Trends in Scatter Plots

MGSE8.SP.2: Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.

Correlation

Solving Using Trend Lines

MGSE8.SP.3: Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept.

MGSE8.SP.4: Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table.

MGSE8.SP.4.a: Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects.

MGSE8.SP.4.b: Use relative frequencies calculated for rows or columns to describe possible association between the two variables.

Correlation last revised: 9/16/2020

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.