Academic Standards

4.NS.1: Read and write whole numbers up to 1,000,000. Use words, models, standard form and expanded form to represent and show equivalent forms of whole numbers up to 1,000,000.

Cannonball Clowns (Number Line Estimation)

4.NS.2: Compare two whole numbers up to 1,000,000 using >, =, and < symbols.

Cannonball Clowns (Number Line Estimation)

4.NS.3: Express whole numbers as fractions and recognize fractions that are equivalent to whole numbers. Name and write mixed numbers using objects or pictures. Name and write mixed numbers as improper fractions using objects or pictures.

Adding Fractions (Fraction Tiles)

Equivalent Fractions (Fraction Tiles)

Fraction Artist 1 (Area Models of Fractions)

Fraction Garden (Comparing Fractions)

Fractions Greater than One (Fraction Tiles)

Modeling Fractions (Area Models)

4.NS.4: Explain why a fraction, a/b, is equivalent to a fraction, (n Ã? a)/(n Ã? b), by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use the principle to recognize and generate equivalent fractions.

Adding Fractions (Fraction Tiles)

Equivalent Fractions (Fraction Tiles)

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

Fraction Garden (Comparing Fractions)

Fractions Greater than One (Fraction Tiles)

Modeling Fractions (Area Models)

Toy Factory (Set Models of Fractions)

4.NS.5: Compare two fractions with different numerators and different denominators (e.g., by creating common denominators or numerators, or by comparing to a benchmark, such as 0, 1/2, and 1). Recognize comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions (e.g., by using a visual fraction model).

Adding Fractions (Fraction Tiles)

Equivalent Fractions (Fraction Tiles)

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

Fraction Garden (Comparing Fractions)

Fractions Greater than One (Fraction Tiles)

Modeling Fractions (Area Models)

4.NS.6: Write tenths and hundredths in decimal and fraction notations. Use words, models, standard form and expanded form to represent decimal numbers to hundredths. Know the fraction and decimal equivalents for halves and fourths (e.g., 1/2 = 0.5 = 0.50, 7/4 = 1 3/4 = 1.75).

Treasure Hunter (Decimals on the Number Line)

4.NS.7: Compare two decimals to hundredths by reasoning about their size based on the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions (e.g., by using a visual model).

Fraction, Decimal, Percent (Area and Grid Models)

Modeling Decimals (Area and Grid Models)

Modeling Decimals (Base-10 Blocks)

4.NS.8: Find all factor pairs for a whole number in the range 1â??100. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range 1â??100 is a multiple of a given one-digit number.

Factor Trees (Factoring Numbers)

4.NS.9: Use place value understanding to round multi-digit whole numbers to any given place value.

Cannonball Clowns (Number Line Estimation)

Modeling Decimals (Base-10 Blocks)

Rounding Whole Numbers (Number Line)

4.C.1: Add and subtract multi-digit whole numbers fluently using a standard algorithmic approach.

Cargo Captain (Multi-digit Subtraction)

Number Line Frog Hop (Addition and Subtraction)

4.C.2: Multiply a whole number of up to four digits by a one-digit whole number and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Describe the strategy and explain the reasoning.

Cannonball Clowns (Number Line Estimation)

4.C.3: Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Describe the strategy and explain the reasoning.

Function Machines 3 (Functions and Problem Solving)

No Alien Left Behind (Division with Remainders)

4.C.4: Multiply fluently within 100.

Factor Trees (Factoring Numbers)

Multiplying Decimals (Area Model)

4.C.5: Add and subtract fractions with common denominators. Decompose a fraction into a sum of fractions with common denominators. Understand addition and subtraction of fractions as combining and separating parts referring to the same whole.

Adding Fractions (Fraction Tiles)

Equivalent Fractions (Fraction Tiles)

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

Fraction, Decimal, Percent (Area and Grid Models)

Fractions Greater than One (Fraction Tiles)

4.C.6: Add and subtract mixed numbers with common denominators (e.g. by replacing each mixed number with an equivalent fraction and/or by using properties of operations and the relationship between addition and subtraction).

Equivalent Fractions (Fraction Tiles)

Fraction Garden (Comparing Fractions)

Fractions Greater than One (Fraction Tiles)

Function Machines 3 (Functions and Problem Solving)

4.C.7: Show how the order in which two numbers are multiplied (commutative property) and how numbers are grouped in multiplication (associative property) will not change the product. Use these properties to show that numbers can by multiplied in any order. Understand and use the distributive property.

Chocomatic (Multiplication, Arrays, and Area)

Critter Count (Modeling Multiplication)

4.AT.1: Solve real-world problems involving addition and subtraction of multi-digit whole numbers (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).

Cargo Captain (Multi-digit Subtraction)

Number Line Frog Hop (Addition and Subtraction)

4.AT.2: Recognize and apply the relationships between addition and multiplication, between subtraction and division, and the inverse relationship between multiplication and division to solve real-world and other mathematical problems.

Chocomatic (Multiplication, Arrays, and Area)

Critter Count (Modeling Multiplication)

4.AT.3: Interpret a multiplication equation as a comparison (e.g., interpret 35 = 5 Ã? 7 as a statement that 35 is 5 times as many as 7, and 7 times as many as 5). Represent verbal statements of multiplicative comparisons as multiplication equations.

Chocomatic (Multiplication, Arrays, and Area)

Critter Count (Modeling Multiplication)

Multiplying Decimals (Area Model)

4.AT.4: Solve real-world problems with whole numbers involving multiplicative comparison (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem), distinguishing multiplicative comparison from additive comparison.

No Alien Left Behind (Division with Remainders)

4.AT.5: Solve real-world problems involving addition and subtraction of fractions referring to the same whole and having common denominators (e.g., by using visual fraction models and equations to represent the problem).

Adding Fractions (Fraction Tiles)

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

4.AT.6: Understand that an equation, such as y = 3x + 5, is a rule to describe a relationship between two variables and can be used to find a second number when a first number is given. Generate a number pattern that follows a given rule.

4.G.2: Recognize and draw lines of symmetry in two-dimensional figures. Identify figures that have lines of symmetry.

4.M.3: Use the four operations (addition, subtraction, multiplication and division) to solve real-world problems involving distances, intervals of time, volumes, masses of objects, and money. Include addition and subtraction problems involving simple fractions and problems that require expressing measurements given in a larger unit in terms of a smaller unit.

Elapsed Time

No Alien Left Behind (Division with Remainders)

4.M.4: Apply the area and perimeter formulas for rectangles to solve real-world problems and other mathematical problems involving shapes. Recognize area as additive and find the area of complex shapes composed of rectangles by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts; apply this technique to solve real-world problems and other mathematical problems involving shapes.

Fido's Flower Bed (Perimeter and Area)

4.DA.1: Formulate questions that can be addressed with data. Use observations, surveys, and experiments to collect, represent, and interpret the data using tables (including frequency tables), line plots, and bar graphs.

Graphing Skills

Mascot Election (Pictographs and Bar Graphs)

Movie Reviewer (Mean and Median)

Prairie Ecosystem

Reaction Time 1 (Graphs and Statistics)

Reaction Time 2 (Graphs and Statistics)

4.DA.2: Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using data displayed in line plots.

Adding Fractions (Fraction Tiles)

Fraction Artist 1 (Area Models of Fractions)

Fraction Artist 2 (Area Models of Fractions)

Fractions Greater than One (Fraction Tiles)

Mascot Election (Pictographs and Bar Graphs)

Movie Reviewer (Mean and Median)

4.DA.3: Interpret data displayed in a circle graph.

Graphing Skills

Mascot Election (Pictographs and Bar Graphs)

Reaction Time 2 (Graphs and Statistics)

Correlation last revised: 10/22/2014