Common Core Georgia Performance Standards

MCC9-12.A.SSE.1a: Interpret parts of an expression, such as terms, factors, and coefficients.

Compound Interest

Exponential Growth and Decay

Unit Conversions

MCC9-12.A.SSE.1b: Interpret complicated expressions by viewing one or more of their parts as a single entity.

Compound Interest

Exponential Growth and Decay

Translating and Scaling Functions

Using Algebraic Expressions

MCC9-12.A.SSE.2: Use the structure of an expression to identify ways to rewrite it.

Equivalent Algebraic Expressions II

Factoring Special Products

Modeling the Factorization of *ax*^{2}+*bx*+*c*

Modeling the Factorization of *x*^{2}+*bx*+*c*

Simplifying Algebraic Expressions I

Simplifying Algebraic Expressions II

Solving Algebraic Equations II

MCC9-12.A.APR.1: Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

MCC9-12.A.APR.2: Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x - a is p(a), so p(a) = 0 if and only if (x - a) is a factor of p(x).

Dividing Polynomials Using Synthetic Division

Polynomials and Linear Factors

MCC9-12.A.APR.3: Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.

Polynomials and Linear Factors

Quadratics in Factored Form

MCC9-12.A.APR.5: Know and apply the Binomial Theorem for the expansion of (x + y)? in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle.

MCC9-12.A.CED.1: Create equations and inequalities in one variable and use them to solve problems.

Absolute Value Equations and Inequalities

Arithmetic Sequences

Compound Interest

Exploring Linear Inequalities in One Variable

Exponential Growth and Decay

Geometric Sequences

Modeling and Solving Two-Step Equations

Quadratic Inequalities

Solving Linear Inequalities in One Variable

Solving Two-Step Equations

MCC9-12.A.CED.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

2D Collisions

Air Track

Compound Interest

Determining a Spring Constant

Golf Range

Points, Lines, and Equations

Slope-Intercept Form of a Line

MCC9-12.A.CED.3: Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context.

MCC9-12.A.CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Solving Formulas for any Variable

MCC9-12.A.REI.2: Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.

MCC9-12.A.REI.11: Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

Cat and Mouse (Modeling with Linear Systems)

Point-Slope Form of a Line

Solving Equations by Graphing Each Side

Solving Linear Systems (Matrices and Special Solutions)

Solving Linear Systems (Slope-Intercept Form)

Standard Form of a Line

MCC9-12.F.IF.4: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.

Distance-Time Graphs

Distance-Time and Velocity-Time Graphs

MCC9-12.F.IF.5: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.

General Form of a Rational Function

Introduction to Functions

Radical Functions

Rational Functions

MCC9-12.F.IF.6: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Distance-Time Graphs

Distance-Time and Velocity-Time Graphs

MCC9-12.F.IF.7a: Graph linear and quadratic functions and show intercepts, maxima, and minima.

Linear Functions

Points, Lines, and Equations

Quadratics in Factored Form

Quadratics in Polynomial Form

Quadratics in Vertex Form

Slope-Intercept Form of a Line

Zap It! Game

MCC9-12.F.IF.7b: Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.

Absolute Value with Linear Functions

Radical Functions

MCC9-12.F.IF.7c: Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.

Graphs of Polynomial Functions

Polynomials and Linear Factors

Quadratics in Factored Form

Quadratics in Vertex Form

Roots of a Quadratic

Zap It! Game

MCC9-12.F.IF.7d: Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.

General Form of a Rational Function

Rational Functions

MCC9-12.F.IF.7e: Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

Cosine Function

Exponential Functions

Exponential Growth and Decay

Logarithmic Functions

Logarithmic Functions: Translating and Scaling

Sine Function

Tangent Function

MCC9-12.F.IF.8a: Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

Factoring Special Products

Modeling the Factorization of *ax*^{2}+*bx*+*c*

Modeling the Factorization of *x*^{2}+*bx*+*c*

MCC9-12.F.BF.1a: Determine an explicit expression, a recursive process, or steps for calculation from a context.

Arithmetic Sequences

Geometric Sequences

MCC9-12.F.BF.3: Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology.

Exponential Functions

Logarithmic Functions

Translating and Scaling Functions

Translating and Scaling Sine and Cosine Functions

Zap It! Game

MCC9-12.F.BF.4b: Verify by composition that one function is the inverse of another.

MCC9-12.F.BF.4c: Read values of an inverse function from a graph or a table, given that the function has an inverse.

MCC9-12.F.BF.5: Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.

MCC9-12.F.LE.4: For exponential models, express as a logarithm the solution to ab to the c?? power = ?? where a, c, and ?? are numbers and the base b is 2, 10, or ??; evaluate the logarithm using technology.

MCC9-12.F.TF.5: Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.

MCC9-12.S.ID.2: Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.

Box-and-Whisker Plots

Describing Data Using Statistics

Real-Time Histogram

Sight vs. Sound Reactions

MCC9-12.S.IC.4: Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.

Estimating Population Size

Polling: City

Polling: Neighborhood

MCC9-12.S.IC.5: Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.

Real-Time Histogram

Sight vs. Sound Reactions

Correlation last revised: 5/10/2018