MCC9-12.A: High School---Algebra

MCC9-12.A.SSE.1a: Interpret parts of an expression, such as terms, factors, and coefficients.

 Compound Interest
 Exponential Growth and Decay
 Unit Conversions

MCC9-12.A.SSE.1b: Interpret complicated expressions by viewing one or more of their parts as a single entity.

 Compound Interest
 Exponential Growth and Decay
 Translating and Scaling Functions
 Using Algebraic Expressions

MCC9-12.A.SSE.2: Use the structure of an expression to identify ways to rewrite it.

 Equivalent Algebraic Expressions II
 Factoring Special Products
 Modeling the Factorization of ax2+bx+c
 Modeling the Factorization of x2+bx+c
 Simplifying Algebraic Expressions I
 Simplifying Algebraic Expressions II
 Solving Algebraic Equations II

MCC9-12.A.APR.1: Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

 Addition of Polynomials

MCC9-12.A.APR.2: Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x - a is p(a), so p(a) = 0 if and only if (x - a) is a factor of p(x).

 Dividing Polynomials Using Synthetic Division
 Polynomials and Linear Factors

MCC9-12.A.APR.3: Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.

 Polynomials and Linear Factors
 Quadratics in Factored Form

MCC9-12.A.APR.5: Know and apply the Binomial Theorem for the expansion of (x + y)? in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle.

 Binomial Probabilities

MCC9-12.A.CED.1: Create equations and inequalities in one variable and use them to solve problems.

 Absolute Value Equations and Inequalities
 Arithmetic Sequences
 Compound Interest
 Exploring Linear Inequalities in One Variable
 Exponential Growth and Decay
 Geometric Sequences
 Modeling and Solving Two-Step Equations
 Quadratic Inequalities
 Solving Linear Inequalities in One Variable
 Solving Two-Step Equations

MCC9-12.A.CED.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

 2D Collisions
 Air Track
 Compound Interest
 Determining a Spring Constant
 Golf Range
 Points, Lines, and Equations
 Slope-Intercept Form of a Line

MCC9-12.A.CED.3: Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context.

 Linear Programming

MCC9-12.A.CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

 Solving Formulas for any Variable

MCC9-12.A.REI.2: Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.

 Radical Functions

MCC9-12.A.REI.11: Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

 Cat and Mouse (Modeling with Linear Systems)
 Point-Slope Form of a Line
 Solving Equations by Graphing Each Side
 Solving Linear Systems (Matrices and Special Solutions)
 Solving Linear Systems (Slope-Intercept Form)
 Standard Form of a Line

MCC9-12.F: High School---Functions

MCC9-12.F.IF.4: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.

 Distance-Time Graphs
 Distance-Time and Velocity-Time Graphs

MCC9-12.F.IF.5: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.

 General Form of a Rational Function
 Introduction to Functions
 Radical Functions
 Rational Functions

MCC9-12.F.IF.6: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

 Distance-Time Graphs
 Distance-Time and Velocity-Time Graphs

MCC9-12.F.IF.7a: Graph linear and quadratic functions and show intercepts, maxima, and minima.

 Linear Functions
 Points, Lines, and Equations
 Quadratics in Factored Form
 Quadratics in Polynomial Form
 Quadratics in Vertex Form
 Slope-Intercept Form of a Line
 Zap It! Game

MCC9-12.F.IF.7b: Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.

 Absolute Value with Linear Functions
 Radical Functions

MCC9-12.F.IF.7c: Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.

 Graphs of Polynomial Functions
 Polynomials and Linear Factors
 Quadratics in Factored Form
 Quadratics in Vertex Form
 Roots of a Quadratic
 Zap It! Game

MCC9-12.F.IF.7d: Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.

 General Form of a Rational Function
 Rational Functions

MCC9-12.F.IF.7e: Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

 Cosine Function
 Exponential Functions
 Exponential Growth and Decay
 Logarithmic Functions
 Logarithmic Functions: Translating and Scaling
 Sine Function
 Tangent Function

MCC9-12.F.IF.8a: Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

 Factoring Special Products
 Modeling the Factorization of ax2+bx+c
 Modeling the Factorization of x2+bx+c

MCC9-12.F.BF.1a: Determine an explicit expression, a recursive process, or steps for calculation from a context.

 Arithmetic Sequences
 Geometric Sequences

MCC9-12.F.BF.3: Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology.

 Exponential Functions
 Logarithmic Functions
 Translating and Scaling Functions
 Translating and Scaling Sine and Cosine Functions
 Zap It! Game

MCC9-12.F.BF.4b: Verify by composition that one function is the inverse of another.

 Logarithmic Functions

MCC9-12.F.BF.4c: Read values of an inverse function from a graph or a table, given that the function has an inverse.

 Logarithmic Functions

MCC9-12.F.BF.5: Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.

 Logarithmic Functions

MCC9-12.F.LE.4: For exponential models, express as a logarithm the solution to ab to the c?? power = ?? where a, c, and ?? are numbers and the base b is 2, 10, or ??; evaluate the logarithm using technology.

 Compound Interest

MCC9-12.F.TF.5: Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.

 Sound Beats and Sine Waves

MCC9-12.S: High School---Statistics and Probability

MCC9-12.S.ID.2: Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.

 Box-and-Whisker Plots
 Describing Data Using Statistics
 Real-Time Histogram
 Sight vs. Sound Reactions

MCC9-12.S.IC.4: Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.

 Estimating Population Size
 Polling: City
 Polling: Neighborhood

MCC9-12.S.IC.5: Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.

 Real-Time Histogram
 Sight vs. Sound Reactions

Correlation last revised: 1/20/2017

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.