Common Core Georgia Performance Standards

MCC9-12.F.IF.1: Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If ?? is a function and ?? is an element of its domain, then ??(??) denotes the output of ?? corresponding to the input ??. The graph of ?? is the graph of the equation ?? = ??(??).

Introduction to Functions

Points, Lines, and Equations

MCC9-12.F.IF.2: Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

Absolute Value with Linear Functions

Translating and Scaling Functions

MCC9-12.F.IF.4: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.

Distance-Time Graphs

Distance-Time and Velocity-Time Graphs

MCC9-12.F.IF.5: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.

General Form of a Rational Function

Introduction to Functions

Radical Functions

Rational Functions

MCC9-12.F.IF.6: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Distance-Time Graphs

Distance-Time and Velocity-Time Graphs

MCC9-12.F.IF.7a: Graph linear and quadratic functions and show intercepts, maxima, and minima.

Linear Functions

Points, Lines, and Equations

Quadratics in Factored Form

Quadratics in Polynomial Form

Quadratics in Vertex Form

Slope-Intercept Form of a Line

Zap It! Game

MCC9-12.F.IF.7b: Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.

Absolute Value with Linear Functions

Radical Functions

MCC9-12.F.IF.7c: Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.

Graphs of Polynomial Functions

Polynomials and Linear Factors

Quadratics in Factored Form

Quadratics in Vertex Form

Roots of a Quadratic

Zap It! Game

MCC9-12.F.IF.7d: Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.

General Form of a Rational Function

Rational Functions

MCC9-12.F.IF.7e: Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

Cosine Function

Exponential Functions

Exponential Growth and Decay

Logarithmic Functions

Logarithmic Functions: Translating and Scaling

Sine Function

Tangent Function

MCC9-12.F.IF.8a: Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

Factoring Special Products

Modeling the Factorization of *ax*^{2}+*bx*+*c*

Modeling the Factorization of *x*^{2}+*bx*+*c*

MCC9-12.F.BF.1a: Determine an explicit expression, a recursive process, or steps for calculation from a context.

Arithmetic Sequences

Geometric Sequences

MCC9-12.F.BF.2: Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.

Arithmetic Sequences

Geometric Sequences

MCC9-12.F.BF.3: Identify the effect on the graph of replacing ??(??) by ??(??) + ??, ?? ??(??), ??(????), and ??(?? + ??) for specific values of ?? (both positive and negative); find the value of ?? given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology.

Exponential Functions

Logarithmic Functions

Translating and Scaling Functions

Translating and Scaling Sine and Cosine Functions

Zap It! Game

MCC9-12.F.BF.4b: Verify by composition that one function is the inverse of another.

MCC9-12.F.BF.4c: Read values of an inverse function from a graph or a table, given that the function has an inverse.

MCC9-12.F.BF.5: Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.

MCC9-12.F.LE.1a: Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.

Compound Interest

Linear Functions

MCC9-12.F.LE.1b: Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

Arithmetic Sequences

Compound Interest

Distance-Time Graphs

Distance-Time and Velocity-Time Graphs

Linear Functions

MCC9-12.F.LE.1c: Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

Drug Dosage

Exponential Growth and Decay

Half-life

MCC9-12.F.LE.2: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

Compound Interest

Exponential Functions

Exponential Growth and Decay

Point-Slope Form of a Line

Slope-Intercept Form of a Line

MCC9-12.F.LE.4: For exponential models, express as a logarithm the solution to ???? to the ???? power = ?? where ??, ??, and ?? are numbers and the base ?? is 2, 10, or ??; evaluate the logarithm using technology.

MCC9-12.F.LE.5: Interpret the parameters in a linear or exponential function in terms of a context.

Arithmetic Sequences

Compound Interest

Distance-Time Graphs

Distance-Time and Velocity-Time Graphs

Exponential Growth and Decay

MCC9-12.F.TF.5: Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.

MCC9-12.F.TF.9: Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems.

Simplifying Trigonometric Expressions

Sum and Difference Identities for Sine and Cosine

Correlation last revised: 3/7/2018

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.