Tested State Standards

MP.6.1: The student uses mathematical processes to acquire and demonstrate mathematical understanding.

MP.6.1.A: apply mathematics to problems arising in everyday life, society, and the workplace;

MP.6.1.B: use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution;

MP.6.1.C: select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems;

Estimating Sums and Differences

Multiplying Decimals (Area Model)

MP.6.1.D: communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate;

Biconditional Statements

Fraction, Decimal, Percent (Area and Grid Models)

Graphing Skills

Using Algebraic Expressions

MP.6.1.E: create and use representations to organize, record, and communicate mathematical ideas;

Describing Data Using Statistics

Graphing Skills

Stem-and-Leaf Plots

Using Algebraic Expressions

MP.6.1.G: display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication.

Biconditional Statements

Using Algebraic Expressions

1.6.2: The student applies mathematical process standards to represent and use rational numbers in a variety of forms.

1.6.2.B: identify a number, its opposite, and its absolute value;

Absolute Value with Linear Functions

Integers, Opposites, and Absolute Values

Rational Numbers, Opposites, and Absolute Values

1.6.2.C: locate, compare, and order integers and rational numbers using a number line;

Comparing and Ordering Decimals

Fraction Garden (Comparing Fractions)

Integers, Opposites, and Absolute Values

Modeling Decimals (Area and Grid Models)

Modeling Fractions (Area Models)

Rational Numbers, Opposites, and Absolute Values

1.6.2.D: order a set of rational numbers arising from mathematical and real-world contexts; and

Comparing and Ordering Decimals

Estimating Population Size

Integers, Opposites, and Absolute Values

Modeling Fractions (Area Models)

Rational Numbers, Opposites, and Absolute Values

1.6.2.E: extend representations for division to include fraction notation such as a/b represents the same number as a รท b where b is not equal to 0.

Fraction Artist 1 (Area Models of Fractions)

1.6.4: The student applies mathematical process standards to develop an understanding of proportional relationships in problem situations.

1.6.4.C: give examples of ratios as multiplicative comparisons of two quantities describing the same attribute;

Beam to Moon (Ratios and Proportions)

Part-to-part and Part-to-whole Ratios

Proportions and Common Multipliers

Road Trip (Problem Solving)

1.6.4.E: represent ratios and percents with concrete models, fractions, and decimals;

Beam to Moon (Ratios and Proportions)

Modeling Decimals (Area and Grid Models)

Part-to-part and Part-to-whole Ratios

Percent of Change

Percents and Proportions

Percents, Fractions, and Decimals

Proportions and Common Multipliers

1.6.4.F: represent benchmark fractions and percents such as 1%, 10%, 25%, 33 1/3%, and multiples of these values using 10 by 10 grids, strip diagrams, number lines, and numbers; and

Estimating Sums and Differences

Part-to-part and Part-to-whole Ratios

1.6.4.G: generate equivalent forms of fractions, decimals, and percents using real-world problems, including problems that involve money.

Dividing Mixed Numbers

Fraction Artist 1 (Area Models of Fractions)

Fraction, Decimal, Percent (Area and Grid Models)

Improper Fractions and Mixed Numbers

Modeling Decimals (Area and Grid Models)

Part-to-part and Part-to-whole Ratios

Percents, Fractions, and Decimals

1.6.5: The student applies mathematical process standards to solve problems involving proportional relationships.

1.6.5.C: use equivalent fractions, decimals, and percents to show equal parts of the same whole.

Fraction, Decimal, Percent (Area and Grid Models)

Percents, Fractions, and Decimals

1.6.7: The student applies mathematical process standards to develop concepts of expressions and equations.

1.6.7.A: generate equivalent numerical expressions using order of operations, including whole number exponents and prime factorization;

Equivalent Algebraic Expressions I

Factor Trees (Factoring Numbers)

Finding Factors with Area Models

Order of Operations

1.6.7.B: distinguish between expressions and equations verbally, numerically, and algebraically;

Compound Interest

Solving Equations on the Number Line

Using Algebraic Equations

1.6.7.C: determine if two expressions are equivalent using concrete models, pictorial models, and algebraic representations; and

Equivalent Algebraic Expressions I

Equivalent Algebraic Expressions II

Simplifying Algebraic Expressions I

Simplifying Algebraic Expressions II

Using Algebraic Expressions

1.6.7.D: generate equivalent expressions using the properties of operations: inverse, identity, commutative, associative, and distributive properties.

Equivalent Algebraic Expressions I

Equivalent Algebraic Expressions II

Modeling the Factorization of *x*^{2}+*bx*+*c*

Simplifying Algebraic Expressions I

Simplifying Algebraic Expressions II

Solving Algebraic Equations II

Using Algebraic Expressions

2.6.3: The student applies mathematical process standards to represent addition, subtraction, multiplication, and division while solving problems and justifying solutions.

2.6.3.B: determine, with and without computation, whether a quantity is increased or decreased when multiplied by a fraction, including values greater than or less than one;

Multiplying Fractions

Multiplying Mixed Numbers

2.6.3.C: represent integer operations with concrete models and connect the actions with the models to standardized algorithms;

Adding and Subtracting Integers

Adding on the Number Line

2.6.3.D: add, subtract, multiply, and divide integers fluently; and

Adding and Subtracting Integers

Adding and Subtracting Integers with Chips

Adding on the Number Line

Addition of Polynomials

2.6.3.E: multiply and divide positive rational numbers fluently.

Adding and Subtracting Integers

Dividing Fractions

Dividing Mixed Numbers

Multiplying Decimals (Area Model)

Multiplying Fractions

Multiplying Mixed Numbers

Multiplying with Decimals

2.6.4: The student applies mathematical process standards to develop an understanding of proportional relationships in problem situations.

2.6.4.B: apply qualitative and quantitative reasoning to solve prediction and comparison of real-world problems involving ratios and rates.

2.6.5: The student applies mathematical process standards to solve problems involving proportional relationships.

2.6.5.A: represent mathematical and real-world problems involving ratios and rates using scale factors, tables, graphs, and proportions; and

Beam to Moon (Ratios and Proportions)

Estimating Population Size

Part-to-part and Part-to-whole Ratios

Percents and Proportions

Proportions and Common Multipliers

Road Trip (Problem Solving)

2.6.5.B: solve real-world problems to find the whole given a part and the percent, to find the part given the whole and the percent, and to find the percent given the part and the whole, including the use of concrete and pictorial models.

Percent of Change

Percents and Proportions

Polling: Neighborhood

2.6.6: The student applies mathematical process standards to use multiple representations to describe algebraic relationships.

2.6.6.C: represent a given situation using verbal descriptions, tables, graphs, and equations in the form y = kx or y = x + b.

Absolute Value Equations and Inequalities

Function Machines 1 (Functions and Tables)

Function Machines 2 (Functions, Tables, and Graphs)

Introduction to Functions

Points, Lines, and Equations

Solving Equations on the Number Line

Using Algebraic Equations

Using Algebraic Expressions

2.6.9: The student applies mathematical process standards to use equations and inequalities to represent situations.

2.6.9.A: write one-variable, one-step equations and inequalities to represent constraints or conditions within problems;

Exploring Linear Inequalities in One Variable

Linear Inequalities in Two Variables

Modeling One-Step Equations

Solving Equations on the Number Line

Solving Linear Inequalities in One Variable

2.6.9.B: represent solutions for one-variable, one-step equations and inequalities on number lines; and

Compound Inequalities

Exploring Linear Inequalities in One Variable

Solving Equations on the Number Line

Solving Linear Inequalities in One Variable

2.6.9.C: write corresponding real-world problems given one-variable, one-step equations or inequalities.

Linear Inequalities in Two Variables

Solving Equations on the Number Line

2.6.10: The student applies mathematical process standards to use equations and inequalities to solve problems.

2.6.10.A: model and solve one-variable, one-step equations and inequalities that represent problems, including geometric concepts; and

Compound Inequalities

Exploring Linear Inequalities in One Variable

Linear Inequalities in Two Variables

Modeling One-Step Equations

Modeling and Solving Two-Step Equations

Solving Algebraic Equations I

Solving Algebraic Equations II

Solving Equations on the Number Line

Solving Linear Inequalities in One Variable

2.6.10.B: determine if the given value(s) make(s) one-variable, one-step equations or inequalities true.

Compound Inequalities

Exploring Linear Inequalities in One Variable

Linear Inequalities in Two Variables

Modeling One-Step Equations

Modeling and Solving Two-Step Equations

Solving Algebraic Equations II

Solving Equations on the Number Line

Solving Linear Inequalities in One Variable

3.6.4: The student applies mathematical process standards to develop an understanding of proportional relationships in problem situations.

3.6.4.H: convert units within a measurement system, including the use of proportions and unit rates.

3.6.8: The student applies mathematical process standards to use geometry to represent relationships and solve problems.

3.6.8.A: extend previous knowledge of triangles and their properties to include the sum of angles of a triangle, the relationship between the lengths of sides and measures of angles in a triangle, and determining when three lengths form a triangle;

Classifying Triangles

Concurrent Lines, Medians, and Altitudes

Isosceles and Equilateral Triangles

Polygon Angle Sum

Triangle Angle Sum

Triangle Inequalities

3.6.8.B: model area formulas for parallelograms, trapezoids, and triangles by decomposing and rearranging parts of these shapes;

Area of Parallelograms

Area of Triangles

Perimeter and Area of Rectangles

3.6.8.C: write equations that represent problems related to the area of rectangles, parallelograms, trapezoids, and triangles and volume of right rectangular prisms where dimensions are positive rational numbers; and

Area of Parallelograms

Area of Triangles

Perimeter and Area of Rectangles

Prisms and Cylinders

3.6.8.D: determine solutions for problems involving the area of rectangles, parallelograms, trapezoids, and triangles and volume of right rectangular prisms where dimensions are positive rational numbers.

Area of Parallelograms

Area of Triangles

Balancing Blocks (Volume)

Chocomatic (Multiplication, Arrays, and Area)

Perimeter and Area of Rectangles

Prisms and Cylinders

3.6.11: The student applies mathematical process standards to use coordinate geometry to identify locations on a plane.

3.6.11.A: graph points in all four quadrants using ordered pairs of rational numbers.

City Tour (Coordinates)

Elevator Operator (Line Graphs)

Points in the Coordinate Plane

Points, Lines, and Equations

4.6.12: The student applies mathematical process standards to use numerical or graphical representations to analyze problems.

4.6.12.A: represent numeric data graphically, including dot plots, stem-and-leaf plots, histograms, and box plots;

Box-and-Whisker Plots

Describing Data Using Statistics

Histograms

Mascot Election (Pictographs and Bar Graphs)

Mean, Median, and Mode

Reaction Time 1 (Graphs and Statistics)

Reaction Time 2 (Graphs and Statistics)

Stem-and-Leaf Plots

4.6.12.B: use the graphical representation of numeric data to describe the center, spread, and shape of the data distribution;

Describing Data Using Statistics

Mean, Median, and Mode

Movie Reviewer (Mean and Median)

Populations and Samples

Reaction Time 1 (Graphs and Statistics)

Reaction Time 2 (Graphs and Statistics)

Real-Time Histogram

Stem-and-Leaf Plots

4.6.12.C: summarize numeric data with numerical summaries, including the mean and median (measures of center) and the range and interquartile range (IQR) (measures of spread), and use these summaries to describe the center, spread, and shape of the data distribution; and

Box-and-Whisker Plots

Describing Data Using Statistics

Mean, Median, and Mode

Movie Reviewer (Mean and Median)

Reaction Time 1 (Graphs and Statistics)

Reaction Time 2 (Graphs and Statistics)

Real-Time Histogram

Stem-and-Leaf Plots

4.6.12.D: summarize categorical data with numerical and graphical summaries, including the mode, the percent of values in each category (relative frequency table), and the percent bar graph, and use these summaries to describe the data distribution.

4.6.13: The student applies mathematical process standards to use numerical or graphical representations to solve problems.

4.6.13.A: interpret numeric data summarized in dot plots, stem-and-leaf plots, histograms, and box plots; and

Box-and-Whisker Plots

Describing Data Using Statistics

Histograms

Mean, Median, and Mode

Reaction Time 1 (Graphs and Statistics)

Reaction Time 2 (Graphs and Statistics)

Stem-and-Leaf Plots

Correlation last revised: 9/16/2020

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.