H.P.1A: The practices of science and engineering support the development of science concepts, develop the habits of mind that are necessary for scientific thinking, and allow students to engage in science in ways that are similar to those used by scientists and engineers.

H.P.1A.1: Ask questions to

H.P.1A.1.2: refine models, explanations, or designs, or

 Pendulum Clock

H.P.1A.1.3: extend the results of investigations or challenge scientific arguments or claims.

 Photoelectric Effect

H.P.1A.2: Develop, use, and refine models to

H.P.1A.2.1: understand or represent phenomena, processes, and relationships,

 Atwood Machine
 Center of Mass
 Coulomb Force (Static)
 Doppler Shift
 Gravity Pitch
 Half-life
 Inclined Plane - Simple Machine
 Orbital Motion - Kepler's Laws

H.P.1A.2.2: test devices or solutions, or

 Trebuchet

H.P.1A.2.3: communicate ideas to others.

 Ray Tracing (Lenses)
 Ray Tracing (Mirrors)
 Ripple Tank

H.P.1A.3: Plan and conduct controlled scientific investigations to answer questions, test hypotheses, and develop explanations:

H.P.1A.3.2: identify materials, procedures, and variables,

 Pendulum Clock

H.P.1A.3.3: use appropriate laboratory equipment, technology, and techniques to collect qualitative and quantitative data, and

 Triple Beam Balance

H.P.1A.3.4: record and represent data in an appropriate form. Use appropriate safety procedures.

 Pendulum Clock
 Period of Mass on a Spring
 Reaction Time 1 (Graphs and Statistics)
 Real-Time Histogram

H.P.1A.4: Analyze and interpret data from informational texts and data collected from investigations using a range of methods (such as tabulation, graphing, or statistical analysis) to

H.P.1A.4.1: reveal patterns and construct meaning,

 Half-life
 Pendulum Clock
 Ripple Tank
 Roller Coaster Physics

H.P.1A.5: Use mathematical and computational thinking to

H.P.1A.5.1: use and manipulate appropriate English and metric units,

 Unit Conversions

H.P.1A.5.2: express relationships between variables for models and investigations, or

 Determining a Spring Constant
 Fan Cart Physics
 Pendulum Clock
 Photoelectric Effect
 Roller Coaster Physics

H.P.1A.6: Construct explanations of phenomena using

H.P.1A.6.2: conclusions from scientific investigations,

 Diffusion
 Pendulum Clock

H.P.1A.6.4: data communicated in graphs, tables, or diagrams.

 Pendulum Clock
 Ray Tracing (Lenses)
 Ray Tracing (Mirrors)

H.P.1A.8: Obtain and evaluate scientific information to

H.P.1A.8.A: Communicate using the conventions and expectations of scientific writing or oral presentations by

H.P.1A.8.A.2: reporting the results of student experimental investigations.

 Diffusion

H.P.1B: Technology is any modification to the natural world created to fulfill the wants and needs of humans. The engineering design process involves a series of iterative steps used to solve a problem and often leads to the development of a new or improved technology.

H.P.1B.1: Construct devices or design solutions using scientific knowledge to solve specific problems or needs:

H.P.1B.1.3: generate and communicate ideas for possible devices or solutions,

 Trebuchet

H.P.1B.1.4: build and test devices or solutions,

 Pendulum Clock
 Trebuchet

H.P.1B.1.5: determine if the devices or solutions solved the problem and refine the design if needed, and

 Trebuchet

H.P.1B.1.6: communicate the results.

 Trebuchet

H.P.2A: The linear motion of an object can be described by its displacement, velocity, and acceleration.

H.P.2A.1: Plan and conduct controlled scientific investigations on the straight-line motion of an object to include an interpretation of the object's displacement, time of motion, constant velocity, average velocity, and constant acceleration.

 Atwood Machine
 Distance-Time and Velocity-Time Graphs
 Free-Fall Laboratory

H.P.2A.3: Use mathematical and computational thinking to apply formulas related to an object's displacement, constant velocity, average velocity and constant acceleration. Interpret the meaning of the sign of displacement, velocity, and acceleration.

 Atwood Machine
 Distance-Time and Velocity-Time Graphs
 Free-Fall Laboratory
 Golf Range
 Shoot the Monkey

H.P.2A.4: Develop and use models to represent an object's displacement, velocity, and acceleration (including vector diagrams, data tables, motion graphs, dot motion diagrams, and mathematical formulas).

 Distance-Time Graphs
 Free-Fall Laboratory
 Golf Range
 Shoot the Monkey

H.P.2A.5: Construct explanations for what is meant by ?constant? velocity and ?constant? acceleration (including writing descriptions of the object's motion and calculating the sign and magnitude of the slope of the line on a position-time and velocity-time graph).

 Distance-Time and Velocity-Time Graphs

H.P.2B: The interactions among objects and their subsequent motion can be explained and predicted by analyzing the forces acting on the objects and applying Newton's laws of motion.

H.P.2B.1: Plan and conduct controlled scientific investigations involving the motion of an object to determine the relationships among the net force on the object, its mass, and its acceleration (Newton's second law of motion, Fnet = ma) and analyze collected data to construct an explanation of the object's motion using Newton's second law of motion.

 Atwood Machine
 Fan Cart Physics
 Free-Fall Laboratory

H.P.2B.2: Use a free-body diagram to represent the forces on an object.

 Pith Ball Lab

H.P.2B.3: Use Newton's Third Law of Motion to construct explanations of everyday phenomena (such as a hammer hitting a nail, the thrust of a rocket engine, the lift of an airplane wing, or a book at rest on a table) and identify the force pairs in each given situation involving two objects and compare the size and direction of each force.

 Coulomb Force (Static)
 Pith Ball Lab

H.P.2B.5: Plan and conduct controlled scientific investigations to support the Law of Conservation of Momentum in the context of two objects moving linearly (p=mv).

 2D Collisions
 Air Track

H.P.2B.6: Construct scientific arguments to defend the use of the conservation of linear momentum in the investigation of traffic accidents in which the initial motions of the objects are used to determine the final motions of the objects.

 2D Collisions
 Air Track

H.P.2B.7: Apply physics principles to design a device that minimizes the force on an object during a collision and construct an explanation for the design.

 Air Track

H.P.2B.8: Develop and use models (such as a computer simulation, drawing, or demonstration) and Newton's Second Law of Motion to construct explanations for why an object moving at a constant speed in a circle is accelerating.

 Uniform Circular Motion

H.P.2B.9: Construct explanations for the practical applications of torque (such as a see-saw, bolt, wrench, and hinged door).

 Torque and Moment of Inertia

H.P.2C: The contact interactions among objects and their subsequent motion can be explained and predicted by analyzing the normal, tension, applied, and frictional forces acting on the objects and by applying Newton's Laws of Motion.

H.P.2C.1: Use a free-body diagram to represent the normal, tension (or elastic), applied, and frictional forces on an object.

 Inclined Plane - Simple Machine
 Pith Ball Lab

H.P.2C.2: Plan and conduct controlled scientific investigations to determine the variables that could affect the kinetic frictional force on an object.

 Inclined Plane - Sliding Objects

H.P.2C.4: Analyze and interpret data on force and displacement to determine the spring (or elastic) constant of an elastic material (Hooke's Law, F=-kx), including constructing an appropriate graph in order to draw a line-of-best-fit whose calculated slope will yield the spring constant, k.

 Determining a Spring Constant

H.P.2C.5: Use mathematical and computational thinking to apply Fnet = ma to analyze problems involving contact interactions and gravity.

 Atwood Machine
 Free-Fall Laboratory

H.P.2D: The non-contact (at a distance) interactions among objects and their subsequent motion can be explained and predicted by analyzing the gravitational, electric, and magnetic forces acting on the objects and applying Newton's laws of motion. These non-contact forces can be represented as fields.

H.P.2D.2: Use mathematical and computational thinking to predict the relationships among the masses of two objects, the attractive gravitational force between them, and the distance between them (Newton's Law of Universal Gravitation, F=Gm1m2/r²).

 Gravitational Force
 Pith Ball Lab

H.P.2D.4: Use mathematical and computational thinking to predict the relationships among the charges of two particles, the attractive or repulsive electrical force between them, and the distance between them (Coulomb's Law. F=kq1q2/r²).

 Coulomb Force (Static)
 Pith Ball Lab

H.P.2D.5: Construct explanations for how the non-contact forces of gravity, electricity, and magnetism can be modeled as fields by sketching field diagrams for two given charges, two massive objects, or a bar magnet and use these diagrams to qualitatively interpret the direction and magnitude of the force at a particular location in the field.

 Coulomb Force (Static)
 Electromagnetic Induction
 Magnetic Induction
 Pith Ball Lab

H.P.2D.6: Use a free-body diagram to represent the gravitational force on an object.

 Inclined Plane - Simple Machine
 Pith Ball Lab

H.P.2D.8: Develop and use models (such as computer simulations, drawings, or demonstrations) to explain the relationship between moving charged particles (current) and magnetic forces and fields.

 Magnetic Induction

H.P.2D.9: Use Newton's Law of Universal Gravitation and Newton's second law of motion to explain why all objects near Earth's surface have the same acceleration.

 Atwood Machine

H.P.2D.10: Use mathematical and computational thinking to apply Fnet = ma to analyze problems involving non-contact interactions, including objects in free fall.

 Free-Fall Laboratory

H.P.3A: Work and energy are equivalent to each other. Work is defined as the product of displacement and the force causing that displacement; this results in the transfer of mechanical energy. Therefore, in the case of mechanical energy, energy is seen as the ability to do work. This is called the work-energy principle. The rate at which work is done (or energy is transformed) is called power. For machines that do useful work for humans, the ratio of useful power output is the efficiency of the machine. For all energies and in all instances, energy in a closed system remains constant.

H.P.3A.1: Use mathematical and computational thinking to determine the work done by a constant force (W=Fd).

 Pulley Lab

H.P.3A.3: Obtain information to communicate how energy is conserved in elastic and inelastic collisions.

 2D Collisions
 Air Track

H.P.3B: Mechanical energy refers to a combination of motion (kinetic energy) and stored energy (potential energy). When only conservative forces act on an object and when no mass is converted to energy, mechanical energy is conserved. Gravitational and electrical potential energy can be modeled as energy stored in the fields created by massive objects or charged particles.

H.P.3B.1: Develop and use models (such as computer simulations, drawings, bar graphs, and diagrams) to exemplify the transformation of mechanical energy in simple systems and those with periodic motion and on which only conservative forces act.

 Energy Conversion in a System
 Energy of a Pendulum
 Inclined Plane - Sliding Objects
 Roller Coaster Physics

H.P.3B.2: Use mathematical and computational thinking to argue the validity of the conservation of mechanical energy in simple systems and those with periodic motion and on which only conservative forces act (KE = ½ mv², PEg = mgh, PEe = ½ kx²).

 Air Track
 Energy Conversion in a System
 Energy of a Pendulum
 Inclined Plane - Sliding Objects
 Roller Coaster Physics

H.P.3D: Sound is a mechanical, longitudinal wave that is the result of vibrations (kinetic energy) that transfer energy through a medium.

H.P.3D.1: Develop and use models (such as drawings) to exemplify the interaction of mechanical waves with different boundaries (sound wave interference) including the formation of standing waves and two-source interference patterns.

 Longitudinal Waves
 Sound Beats and Sine Waves

H.P.3D.3: Develop and use models to explain what happens to the observed frequency of a sound wave when the relative positions of an observer and wave source changes (Doppler effect).

 Doppler Shift
 Doppler Shift Advanced

H.P.3D.4: Use mathematical and computational thinking to analyze problems that relate the frequency, period, amplitude, wavelength, velocity, and energy of sound waves.

 Longitudinal Waves
 Ripple Tank

H.P.3E: During electric circuit interactions, electrical energy (energy stored in a battery or energy transmitted by a current) is transformed into other forms of energy and transferred to circuit devices and the surroundings. Charged particles and magnets create fields that store energy. Magnetic fields exert forces on moving charged particles. Changing magnetic fields cause electrons in wires to move, creating current.

H.P.3E.1: Plan and conduct controlled scientific investigations to determine the relationship between the current and potential drop (voltage) across an Ohmic resistor. Analyze and interpret data to verify Ohm's law, including constructing an appropriate graph in order to draw a line-of-best-fit whose calculated slope will yield R, the resistance of the resistor.

 Advanced Circuits
 Circuits

H.P.3E.2: Develop and use models (such as circuit drawings and mathematical representations) to explain how an electric circuit works by tracing the path of the electrons and including concepts of energy transformation, transfer, and the conservation of energy and electric charge.

 Circuit Builder

H.P.3E.5: Plan and conduct controlled scientific investigations to determine how connecting resistors in series and in parallel affects the power (brightness) of light bulbs.

 Circuits

H.P.3E.6: Obtain and communicate information about the relationship between magnetism and electric currents to explain the role of magnets and coils of wire in microphones, speakers, generators, and motors.

 Electromagnetic Induction
 Magnetic Induction

H.P.3F: During radiant energy interactions, energy can be transferred over long distances without a medium. Radiation can be modeled as an electromagnetic wave or as a stream of discrete packets of energy (photons); all radiation travels at the same speed in a vacuum (speed of light). This electromagnetic radiation is a major source of energy for life on Earth.

H.P.3F.1: Construct scientific arguments that support the wave model of light and the particle model of light.

 Photoelectric Effect

H.P.3F.2: Plan and conduct controlled scientific investigations to determine the interaction between the visible light portion of the electromagnetic spectrum and various objects (including mirrors, lenses, barriers with two slits, and diffraction gratings) and to construct explanations of the behavior of light (reflection, refraction, transmission, interference) in these instances using models (including ray diagrams).

 Ray Tracing (Lenses)
 Ray Tracing (Mirrors)

H.P.3F.3: Use drawings to exemplify the behavior of light passing from one transparent medium to another and construct explanations for this behavior.

 Refraction

H.P.3F.4: Use mathematical and computational thinking to analyze problems that relate the frequency, period, amplitude, wavelength, velocity, and energy of light.

 Ripple Tank

H.P.3F.5: Obtain information to communicate the similarities and differences among the different bands of the electromagnetic spectrum (including radio waves, microwaves, infrared, visible light, ultraviolet, and gamma rays) and give examples of devices or phenomena from each band.

 Herschel Experiment

H.P.3G: Nuclear energy is energy stored in an atom's nucleus; this energy holds the atom together and is called binding energy. Binding energy is a reflection of the equivalence of mass and energy; the mass of any nucleus is always less than the sum of the masses of the individual constituent nucleons that comprise it. Binding energy is also a measure of the strong nuclear force that exists in the nucleus and is responsible for overcoming the repulsive forces among protons. The strong and weak nuclear forces, gravity, and the electromagnetic force are the fundamental forces in nature. Strong and weak nuclear forces determine nuclear sizes, stability, and rates of radioactive decay. At the subatomic scale, the conservation of energy becomes the conservation of mass-energy.

H.P.3G.1: Develop and use models to represent the basic structure of an atom (including protons, neutrons, electrons, and the nucleus).

 Bohr Model of Hydrogen
 Bohr Model: Introduction
 Element Builder

H.P.3G.4: Use mathematical and computational thinking to predict the products of radioactive decay (including alpha, beta, and gamma decay).

 Nuclear Decay

Correlation last revised: 3/31/2017

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.