H.B.1: The student will use the science and engineering practices, including the processes and skills of scientific inquiry, to develop understandings of science content.

Enzymes
Photosynthesis

H.B.1A: The practices of science and engineering support the development of science concepts, develop the habits of mind that are necessary for scientific thinking, and allow students to engage in science in ways that are similar to those used by scientists and engineers.

Enzymes
Photosynthesis

H.B.1A.1: Ask questions to

H.B.1A.1.1: generate hypotheses for scientific investigations,

Hearing: Frequency and Volume
Sight vs. Sound Reactions
Cell Respiration
Diffusion
Enzymes
Evolution
Meowsis
Photosynthesis

H.B.1A.1.2: refine models, explanations, or designs, or

Cell Respiration
Diffusion
Evolution
Meowsis
Photosynthesis

H.B.1A.1.3: extend the results of investigations or challenge scientific arguments or claims.

Hearing: Frequency and Volume
Pendulum Clock
Sight vs. Sound Reactions

H.B.1A.2: Develop, use, and refine models to

H.B.1A.2.1: understand or represent phenomena, processes, and relationships,

Chicken Genetics
Determining a Spring Constant
Mouse Genetics (One Trait)
Mouse Genetics (Two Traits)
RNA and Protein Synthesis
Cell Respiration
Diffusion
Enzymes
Evolution
Meowsis
Photosynthesis

H.B.1A.2.2: test devices or solutions, or

Trebuchet

H.B.1A.2.3: communicate ideas to others.

Mouse Genetics (One Trait)
Cell Respiration
Diffusion
Enzymes
Evolution
Meowsis
Photosynthesis

H.B.1A.3: Plan and conduct controlled scientific investigations to answer questions, test hypotheses, and develop explanations:

Enzymes
Evolution
Photosynthesis

H.B.1A.3.1: formulate scientific questions and testable hypotheses based on credible scientific information,

Hearing: Frequency and Volume
Real-Time Histogram
Seed Germination
Sight vs. Sound Reactions
Cell Respiration
Diffusion
Enzymes
Evolution
Meowsis
Photosynthesis

H.B.1A.3.2: identify materials, procedures, and variables,

Diffusion
Effect of Environment on New Life Form
Hearing: Frequency and Volume
Pendulum Clock
Real-Time Histogram
Sight vs. Sound Reactions

H.B.1A.3.3: use appropriate laboratory equipment, technology, and techniques to collect qualitative and quantitative data, and

Hearing: Frequency and Volume
Sight vs. Sound Reactions

H.B.1A.3.4: record and represent data in an appropriate form. Use appropriate safety procedures.

Diffusion
Hearing: Frequency and Volume
Pendulum Clock
Real-Time Histogram
Sight vs. Sound Reactions

H.B.1A.4: Analyze and interpret data from informational texts and data collected from investigations using a range of methods (such as tabulation, graphing, or statistical analysis) to

Enzymes

H.B.1A.4.1: reveal patterns and construct meaning,

Diffusion
Effect of Environment on New Life Form
Pendulum Clock
Seed Germination
Cell Respiration
Diffusion
Evolution
Meowsis

H.B.1A.4.2: support or refute hypotheses, explanations, claims, or designs, or

Diffusion
Disease Spread
Effect of Environment on New Life Form
Pendulum Clock
Seed Germination
Cell Respiration
Diffusion
Enzymes
Evolution
Meowsis
Photosynthesis

H.B.1A.4.3: evaluate the strength of conclusions.

Diffusion
Effect of Environment on New Life Form
Pendulum Clock
Temperature and Sex Determination - Metric

H.B.1A.5: Use mathematical and computational thinking to

H.B.1A.5.1: use and manipulate appropriate metric units,

Unit Conversions
Unit Conversions 2 - Scientific Notation and Significant Digits

H.B.1A.5.2: express relationships between variables for models and investigations, and

Diffusion
Disease Spread
Osmosis
Photosynthesis Lab
Seed Germination
Cell Respiration
Diffusion
Enzymes
Evolution
Meowsis
Photosynthesis

H.B.1A.5.3: use grade-level appropriate statistics to analyze data.

Describing Data Using Statistics
Sight vs. Sound Reactions
Time Estimation

H.B.1A.6: Construct explanations of phenomena using

H.B.1A.6.1: primary or secondary scientific evidence and models,

Disease Spread
Mouse Genetics (One Trait)
Mouse Genetics (Two Traits)
Osmosis
Cell Respiration
Diffusion
Evolution
Meowsis
Photosynthesis

H.B.1A.6.2: conclusions from scientific investigations,

Disease Spread
Effect of Environment on New Life Form
Mouse Genetics (One Trait)
Mouse Genetics (Two Traits)
Osmosis
Cell Respiration
Diffusion
Enzymes
Evolution
Meowsis
Photosynthesis

H.B.1A.6.3: predictions based on observations and measurements, or

Evolution
Meowsis

H.B.1A.6.4: data communicated in graphs, tables, or diagrams.

Microevolution
Mouse Genetics (One Trait)
Mouse Genetics (Two Traits)
Seasons Around the World
Cell Respiration
Diffusion
Evolution
Meowsis

H.B.1A.7: Construct and analyze scientific arguments to support claims, explanations, or designs using evidence and valid reasoning from observations, data, or informational texts.

Food Chain
Mouse Genetics (One Trait)
Mouse Genetics (Two Traits)
Cell Respiration
Diffusion
Enzymes
Evolution
Meowsis
Photosynthesis

H.B.1A.8: Obtain and evaluate scientific information to

H.B.1A.8.1: answer questions,

Cell Respiration
Diffusion
Evolution
Meowsis

H.B.1A.8.2: explain or describe phenomena,

Cell Respiration
Diffusion
Evolution
Meowsis

H.B.1A.8.3: develop models,

Cell Respiration
Diffusion
Evolution
Meowsis

H.B.1A.8.4: evaluate hypotheses, explanations, claims, or designs or

Seed Germination
Cell Respiration
Diffusion
Enzymes
Evolution
Meowsis
Photosynthesis

H.B.1A.8.A: Communicate using the conventions and expectations of scientific writing or oral presentations by

H.B.1A.8.A.2: reporting the results of student experimental investigations.

Enzymes

H.B.1B: Technology is any modification to the natural world created to fulfill the wants and needs of humans. The engineering design process involves a series of iterative steps used to solve a problem and often leads to the development of a new or improved technology.

H.B.1B.1: Construct devices or design solutions using scientific knowledge to solve specific problems or needs:

H.B.1B.1.1: ask questions to identify problems or needs,

Sight vs. Sound Reactions

H.B.1B.1.4: build and test devices or solutions,

Trebuchet

H.B.1B.1.5: determine if the devices or solutions solved the problem and refine the design if needed, and

Trebuchet

H.B.2: The student will demonstrate the understanding that the essential functions of life take place within cells or systems of cells.

Enzymes
Photosynthesis

H.B.2A: The essential functions of a cell involve chemical reactions that take place between many different types of molecules (including carbohydrates, lipids, proteins and nucleic acids) and are catalyzed by enzymes.

Enzymes
Photosynthesis

H.B.2A.1: Construct explanations of how the structures of carbohydrates, lipids, proteins, and nucleic acids (including DNA and RNA) are related to their functions in organisms.

RNA and Protein Synthesis
Enzymes

H.B.2A.2: Plan and conduct investigations to determine how various environmental factors (including temperature and pH) affect enzyme activity and the rate of biochemical reactions.

Collision Theory
Enzymes

H.B.2B: Organisms and their parts are made of cells. Cells are the structural units of life and have specialized substructures that carry out the essential functions of life. Viruses lack cellular organization and therefore cannot independently carry out all of the essential functions of life.

H.B.2B.1: Develop and use models to explain how specialized structures within cells (including the nucleus, chromosomes, cytoskeleton, endoplasmic reticulum, ribosomes and Golgi complex) interact to produce, modify, and transport proteins. Models should compare and contrast how prokaryotic cells meet the same life needs as eukaryotic cells without similar structures.

RNA and Protein Synthesis

H.B.2B.2: Collect and interpret descriptive data on cell structure to compare and contrast different types of cells (including prokaryotic versus eukaryotic, and animal versus plant versus fungal).

Cell Structure

H.B.2B.3: Obtain information to contrast the structure of viruses with that of cells and to explain, in general, why viruses must use living cells to reproduce.

Virus Lytic Cycle

H.B.2C: Transport processes which move materials into and out of the cell serve to maintain the homeostasis of the cell.

H.B.2C.1: Develop and use models to exemplify how the cell membrane serves to maintain homeostasis of the cell through both active and passive transport processes.

Osmosis
Diffusion

H.B.2C.2: Ask scientific questions to define the problems that organisms face in maintaining homeostasis within different environments (including water of varying solute concentrations).

Osmosis

H.B.2C.3: Analyze and interpret data to explain the movement of molecules (including water) across a membrane.

Osmosis
Diffusion

H.B.2D: The cells of multicellular organisms repeatedly divide to make more cells for growth and repair. During embryonic development, a single cell gives rise to a complex, multicellular organism through the processes of both cell division and differentiation.

H.B.2D.1: Construct models to explain how the processes of cell division and cell differentiation produce and maintain complex multicellular organisms.

Meowsis

H.B.2D.2: Develop and use models to exemplify the changes that occur in a cell during the cell cycle (including changes in cell size, chromosomes, cell membrane/cell wall, and the number of cells produced) and predict, based on the models, what might happen to a cell that does not progress through the cycle correctly.

Cell Division
Meowsis

H.B.3: The student will demonstrate the understanding that all essential processes within organisms require energy which in most ecosystems is ultimately derived from the Sun and transferred into chemical energy by the photosynthetic organisms of that ecosystem.

Photosynthesis

H.B.3A: Cells transform energy that organisms need to perform essential life functions through a complex sequence of reactions in which chemical energy is transferred from one system of interacting molecules to another.

Photosynthesis

H.B.3A.1: Develop and use models to explain how chemical reactions among ATP, ADP, and inorganic phosphate act to transfer chemical energy within cells.

Cell Energy Cycle
Cell Respiration
Photosynthesis

H.B.3A.2: Develop and revise models to describe how photosynthesis transforms light energy into stored chemical energy.

Cell Energy Cycle
Photosynthesis Lab
Plants and Snails
Photosynthesis

H.B.3A.4: Develop models of the major inputs and outputs of cellular respiration (aerobic and anaerobic) to exemplify the chemical process in which the bonds of molecules are broken, the bonds of new compounds are formed and a net transfer of energy results.

Cell Energy Cycle
Cell Respiration

H.B.3A.5: Plan and conduct scientific investigations or computer simulations to determine the relationship between variables that affect the processes of fermentation and/or cellular respiration in living organisms and interpret the data in terms of real-world phenomena.

Cell Respiration

H.B.4: The student will demonstrate an understanding of the specific mechanisms by which characteristics or traits are transferred from one generation to the next via genes.

Evolution

H.B.4A: Each chromosome consists of a single DNA molecule. Each gene on the chromosome is a particular segment of DNA. The chemical structure of DNA provides a mechanism that ensures that information is preserved and transferred to subsequent generations.

H.B.4A.1: Develop and use models at different scales to explain the relationship between DNA, genes, and chromosomes in coding the instructions for characteristic traits transferred from parent to offspring.

Human Karyotyping
Mouse Genetics (One Trait)
Mouse Genetics (Two Traits)
RNA and Protein Synthesis
Evolution
Meowsis

H.B.4A.2: Develop and use models to explain how genetic information (DNA) is copied for transmission to subsequent generations of cells (mitosis).

Cell Division
Meowsis

H.B.4B: In order for information stored in DNA to direct cellular processes, a gene needs to be transcribed from DNA to RNA and then must be translated by the cellular machinery into a protein or an RNA molecule. The protein and RNA products from these processes determine cellular activities and the unique characteristics of an individual. Modern techniques in biotechnology can manipulate DNA to solve human problems.

H.B.4B.1: Develop and use models to describe how the structure of DNA determines the structure of resulting proteins or RNA molecules that carry out the essential functions of life.

RNA and Protein Synthesis

H.B.4B.2: Obtain, evaluate and communicate information on how biotechnology (including gel electrophoresis, plasmid-based transformation and DNA fingerprinting) may be used in the fields of medicine, agriculture, and forensic science.

DNA Analysis
Human Karyotyping
Evolution

H.B.4C: Sex cells are formed by a process of cell division in which the number of chromosomes per cell is halved after replication. With the exception of sex chromosomes, for each chromosome in the body cells of a multicellular organism, there is a second similar, but not identical, chromosome. Although these pairs of similar chromosomes can carry the same genes, they may have slightly different alleles. During meiosis the pairs of similar chromosomes may cross and trade pieces. One chromosome from each pair is randomly passed on to form sex cells resulting in a multitude of possible genetic combinations. The cell produced during fertilization has one set of chromosomes from each parent.

H.B.4C.1: Develop and use models of sex cell formation (meiosis) to explain why the DNA of the daughter cells is different from the DNA of the parent cell.

Meowsis

H.B.4C.2: Analyze data on the variation of traits among individual organisms within a population to explain patterns in the data in the context of transmission of genetic information.

Chicken Genetics
Hardy-Weinberg Equilibrium
Microevolution
Mouse Genetics (One Trait)
Mouse Genetics (Two Traits)
Meowsis

H.B.4C.3: Construct explanations for how meiosis followed by fertilization ensures genetic variation among offspring within the same family and genetic diversity within populations of sexually reproducing organisms.

Meowsis

H.B.4D: Imperfect transmission of genetic information may have positive, negative, or no consequences to the organism. DNA replication is tightly regulated and remarkably accurate, but errors do occur and result in mutations which (rarely) are a source of genetic variation.

H.B.4D.1: Develop and use models to explain how mutations in DNA that occur during replication

Evolution

H.B.4D.1.1: can affect the proteins that are produced or the traits that result and

Evolution: Mutation and Selection
RNA and Protein Synthesis
Enzymes
Evolution

H.B.4D.1.2: may or may not be inherited.

Evolution: Mutation and Selection
Evolution: Natural and Artificial Selection
Evolution
Meowsis

H.B.6A: Ecosystems have carrying capacities, which are limits to the numbers of organisms and populations they can support. Limiting factors include the availability of biotic and abiotic resources and challenges such as predation, competition, and disease.

H.B.6A.1: Analyze and interpret data that depict changes in the abiotic and biotic components of an ecosystem over time or space (such as percent change, average change, correlation and proportionality) and propose hypotheses about possible relationships between the changes in the abiotic components and the biotic components of the environment.

Coral Reefs 1 - Abiotic Factors
Forest Ecosystem
Pond Ecosystem

H.B.6A.2: Use mathematical and computational thinking to support claims that limiting factors affect the number of individuals that an ecosystem can support.

Rabbit Population by Season

H.B.6B: Photosynthesis and cellular respiration are important components of the carbon cycle, in which carbon is exchanged between the biosphere, atmosphere, oceans, and geosphere through chemical, physical, geological, and biological processes.

H.B.6B.1: Develop and use models of the carbon cycle, which include the interactions between photosynthesis, cellular respiration and other processes that release carbon dioxide, to evaluate the effects of increasing atmospheric carbon dioxide on natural and agricultural ecosystems.

Carbon Cycle
Cell Energy Cycle
Heat Absorption

H.B.6C: A complex set of interactions within an ecosystem can keep its numbers and types of organisms relatively stable over long periods of time. Fluctuations in conditions can challenge the functioning of ecosystems in terms of resource and habitat availability.

H.B.6C.1: Construct scientific arguments to support claims that the changes in the biotic and abiotic components of various ecosystems over time affect the ability of an ecosystem to maintain homeostasis.

Coral Reefs 1 - Abiotic Factors
Coral Reefs 2 - Biotic Factors

H.B.6D: Sustaining biodiversity maintains ecosystem functioning and productivity which are essential to supporting and enhancing life on Earth. Humans depend on the living world for the resources and other benefits provided by biodiversity. Human activity can impact biodiversity.

Photosynthesis

Correlation last revised: 9/24/2019

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.