H.B.1A: The practices of science and engineering support the development of science concepts, develop the habits of mind that are necessary for scientific thinking, and allow students to engage in science in ways that are similar to those used by scientists and engineers.

H.B.1A.1: Ask questions to

H.B.1A.1.1: generate hypotheses for scientific investigations,

 Hearing: Frequency and Volume
 Sight vs. Sound Reactions

H.B.1A.1.3: extend the results of investigations or challenge scientific arguments or claims.

 Hearing: Frequency and Volume
 Sight vs. Sound Reactions

H.B.1A.2: Develop, use, and refine models to

H.B.1A.2.1: understand or represent phenomena, processes, and relationships,

 Chicken Genetics
 Mouse Genetics (One Trait)
 Mouse Genetics (Two Traits)
 RNA and Protein Synthesis

H.B.1A.2.3: communicate ideas to others.

 Mouse Genetics (One Trait)

H.B.1A.3: Plan and conduct controlled scientific investigations to answer questions, test hypotheses, and develop explanations:

H.B.1A.3.1: formulate scientific questions and testable hypotheses based on credible scientific information,

 Hearing: Frequency and Volume
 Seed Germination
 Sight vs. Sound Reactions

H.B.1A.3.2: identify materials, procedures, and variables,

 Hearing: Frequency and Volume
 Sight vs. Sound Reactions

H.B.1A.3.3: use appropriate laboratory equipment, technology, and techniques to collect qualitative and quantitative data, and

 Hearing: Frequency and Volume
 Sight vs. Sound Reactions

H.B.1A.3.4: record and represent data in an appropriate form. Use appropriate safety procedures.

 Hearing: Frequency and Volume
 Sight vs. Sound Reactions

H.B.1A.4: Analyze and interpret data from informational texts and data collected from investigations using a range of methods (such as tabulation, graphing, or statistical analysis) to

H.B.1A.4.1: reveal patterns and construct meaning,

 Seed Germination

H.B.1A.4.2: support or refute hypotheses, explanations, claims, or designs, or

 Disease Spread
 Seed Germination

H.B.1A.5: Use mathematical and computational thinking to

H.B.1A.5.1: use and manipulate appropriate metric units,

 Unit Conversions
 Unit Conversions 2 - Scientific Notation and Significant Digits

H.B.1A.5.2: express relationships between variables for models and investigations, and

 Diffusion
 Disease Spread
 Osmosis
 Photosynthesis Lab
 Seed Germination

H.B.1A.5.3: use grade-level appropriate statistics to analyze data.

 Describing Data Using Statistics
 Sight vs. Sound Reactions
 Time Estimation

H.B.1A.6: Construct explanations of phenomena using

H.B.1A.6.1: primary or secondary scientific evidence and models,

 Disease Spread
 Mouse Genetics (One Trait)
 Mouse Genetics (Two Traits)
 Osmosis

H.B.1A.6.2: conclusions from scientific investigations,

 Diffusion
 Disease Spread
 Effect of Environment on New Life Form
 Mouse Genetics (One Trait)
 Mouse Genetics (Two Traits)
 Osmosis

H.B.1A.6.4: data communicated in graphs, tables, or diagrams.

 Identifying Nutrients
 Microevolution
 Mouse Genetics (One Trait)
 Mouse Genetics (Two Traits)

H.B.1A.7: Construct and analyze scientific arguments to support claims, explanations, or designs using evidence and valid reasoning from observations, data, or informational texts.

 Food Chain
 Mouse Genetics (One Trait)
 Mouse Genetics (Two Traits)

H.B.1A.8: Obtain and evaluate scientific information to

H.B.1A.8.4: evaluate hypotheses, explanations, claims, or designs or

 Seed Germination

H.B.1A.8.A: Communicate using the conventions and expectations of scientific writing or oral presentations by

H.B.1A.8.A.2: reporting the results of student experimental investigations.

 Diffusion

H.B.1B: Technology is any modification to the natural world created to fulfill the wants and needs of humans. The engineering design process involves a series of iterative steps used to solve a problem and often leads to the development of a new or improved technology.

H.B.1B.1: Construct devices or design solutions using scientific knowledge to solve specific problems or needs:

H.B.1B.1.1: ask questions to identify problems or needs,

 Sight vs. Sound Reactions

H.B.1B.1.4: build and test devices or solutions,

 Trebuchet

H.B.1B.1.5: determine if the devices or solutions solved the problem and refine the design if needed, and

 Trebuchet

H.B.2A: The essential functions of a cell involve chemical reactions that take place between many different types of molecules (including carbohydrates, lipids, proteins and nucleic acids) and are catalyzed by enzymes.

H.B.2A.1: Construct explanations of how the structures of carbohydrates, lipids, proteins, and nucleic acids (including DNA and RNA) are related to their functions in organisms.

 RNA and Protein Synthesis

H.B.2A.2: Plan and conduct investigations to determine how various environmental factors (including temperature and pH) affect enzyme activity and the rate of biochemical reactions.

 Collision Theory

H.B.2B: Organisms and their parts are made of cells. Cells are the structural units of life and have specialized substructures that carry out the essential functions of life. Viruses lack cellular organization and therefore cannot independently carry out all of the essential functions of life.

H.B.2B.1: Develop and use models to explain how specialized structures within cells (including the nucleus, chromosomes, cytoskeleton, endoplasmic reticulum, ribosomes and Golgi complex) interact to produce, modify, and transport proteins. Models should compare and contrast how prokaryotic cells meet the same life needs as eukaryotic cells without similar structures.

 RNA and Protein Synthesis

H.B.2B.2: Collect and interpret descriptive data on cell structure to compare and contrast different types of cells (including prokaryotic versus eukaryotic, and animal versus plant versus fungal).

 Cell Structure

H.B.2B.3: Obtain information to contrast the structure of viruses with that of cells and to explain, in general, why viruses must use living cells to reproduce.

 Virus Lytic Cycle

H.B.2C: Transport processes which move materials into and out of the cell serve to maintain the homeostasis of the cell.

H.B.2C.1: Develop and use models to exemplify how the cell membrane serves to maintain homeostasis of the cell through both active and passive transport processes.

 Osmosis

H.B.2C.2: Ask scientific questions to define the problems that organisms face in maintaining homeostasis within different environments (including water of varying solute concentrations).

 Paramecium Homeostasis

H.B.2C.3: Analyze and interpret data to explain the movement of molecules (including water) across a membrane.

 Osmosis

H.B.2D: The cells of multicellular organisms repeatedly divide to make more cells for growth and repair. During embryonic development, a single cell gives rise to a complex, multicellular organism through the processes of both cell division and differentiation.

H.B.2D.2: Develop and use models to exemplify the changes that occur in a cell during the cell cycle (including changes in cell size, chromosomes, cell membrane/cell wall, and the number of cells produced) and predict, based on the models, what might happen to a cell that does not progress through the cycle correctly.

 Cell Division

H.B.3A: Cells transform energy that organisms need to perform essential life functions through a complex sequence of reactions in which chemical energy is transferred from one system of interacting molecules to another.

H.B.3A.2: Develop and revise models to describe how photosynthesis transforms light energy into stored chemical energy.

 Cell Energy Cycle
 Photosynthesis Lab
 Plants and Snails

H.B.3A.4: Develop models of the major inputs and outputs of cellular respiration (aerobic and anaerobic) to exemplify the chemical process in which the bonds of molecules are broken, the bonds of new compounds are formed and a net transfer of energy results.

 Cell Energy Cycle

H.B.4A: Each chromosome consists of a single DNA molecule. Each gene on the chromosome is a particular segment of DNA. The chemical structure of DNA provides a mechanism that ensures that information is preserved and transferred to subsequent generations.

H.B.4A.1: Develop and use models at different scales to explain the relationship between DNA, genes, and chromosomes in coding the instructions for characteristic traits transferred from parent to offspring.

 Human Karyotyping
 Mouse Genetics (One Trait)
 RNA and Protein Synthesis

H.B.4A.2: Develop and use models to explain how genetic information (DNA) is copied for transmission to subsequent generations of cells (mitosis).

 Cell Division

H.B.4B: In order for information stored in DNA to direct cellular processes, a gene needs to be transcribed from DNA to RNA and then must be translated by the cellular machinery into a protein or an RNA molecule. The protein and RNA products from these processes determine cellular activities and the unique characteristics of an individual. Modern techniques in biotechnology can manipulate DNA to solve human problems.

H.B.4B.1: Develop and use models to describe how the structure of DNA determines the structure of resulting proteins or RNA molecules that carry out the essential functions of life.

 RNA and Protein Synthesis

H.B.4B.2: Obtain, evaluate and communicate information on how biotechnology (including gel electrophoresis, plasmid-based transformation and DNA fingerprinting) may be used in the fields of medicine, agriculture, and forensic science.

 DNA Analysis
 Human Karyotyping

H.B.4C: Sex cells are formed by a process of cell division in which the number of chromosomes per cell is halved after replication. With the exception of sex chromosomes, for each chromosome in the body cells of a multicellular organism, there is a second similar, but not identical, chromosome. Although these pairs of similar chromosomes can carry the same genes, they may have slightly different alleles. During meiosis the pairs of similar chromosomes may cross and trade pieces. One chromosome from each pair is randomly passed on to form sex cells resulting in a multitude of possible genetic combinations. The cell produced during fertilization has one set of chromosomes from each parent.

H.B.4C.2: Analyze data on the variation of traits among individual organisms within a population to explain patterns in the data in the context of transmission of genetic information.

 Chicken Genetics
 Hardy-Weinberg Equilibrium
 Mouse Genetics (One Trait)
 Mouse Genetics (Two Traits)

H.B.4D: Imperfect transmission of genetic information may have positive, negative, or no consequences to the organism. DNA replication is tightly regulated and remarkably accurate, but errors do occur and result in mutations which (rarely) are a source of genetic variation.

H.B.4D.1: Develop and use models to explain how mutations in DNA that occur during replication

H.B.4D.1.1: can affect the proteins that are produced or the traits that result and

 Evolution: Mutation and Selection
 RNA and Protein Synthesis

H.B.4D.1.2: may or may not be inherited.

 Evolution: Mutation and Selection
 Evolution: Natural and Artificial Selection

H.B.6A: Ecosystems have carrying capacities, which are limits to the numbers of organisms and populations they can support. Limiting factors include the availability of biotic and abiotic resources and challenges such as predation, competition, and disease.

H.B.6A.1: Analyze and interpret data that depict changes in the abiotic and biotic components of an ecosystem over time or space (such as percent change, average change, correlation and proportionality) and propose hypotheses about possible relationships between the changes in the abiotic components and the biotic components of the environment.

 Coral Reefs 1 - Abiotic Factors
 Forest Ecosystem
 Pond Ecosystem

H.B.6A.2: Use mathematical and computational thinking to support claims that limiting factors affect the number of individuals that an ecosystem can support.

 Rabbit Population by Season

H.B.6B: Photosynthesis and cellular respiration are important components of the carbon cycle, in which carbon is exchanged between the biosphere, atmosphere, oceans, and geosphere through chemical, physical, geological, and biological processes.

H.B.6B.1: Develop and use models of the carbon cycle, which include the interactions between photosynthesis, cellular respiration and other processes that release carbon dioxide, to evaluate the effects of increasing atmospheric carbon dioxide on natural and agricultural ecosystems.

 Heat Absorption

H.B.6C: A complex set of interactions within an ecosystem can keep its numbers and types of organisms relatively stable over long periods of time. Fluctuations in conditions can challenge the functioning of ecosystems in terms of resource and habitat availability.

H.B.6C.1: Construct scientific arguments to support claims that the changes in the biotic and abiotic components of various ecosystems over time affect the ability of an ecosystem to maintain homeostasis.

 Coral Reefs 1 - Abiotic Factors
 Coral Reefs 2 - Biotic Factors

H.B.6D: Sustaining biodiversity maintains ecosystem functioning and productivity which are essential to supporting and enhancing life on Earth. Humans depend on the living world for the resources and other benefits provided by biodiversity. Human activity can impact biodiversity.

H.B.6D.1: Design solutions to reduce the impact of human activity on the biodiversity of an ecosystem.

 Coral Reefs 1 - Abiotic Factors
 Coral Reefs 2 - Biotic Factors

Correlation last revised: 4/4/2018

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.