IE7: Interactions within Ecosystems

IE7.2: Observe, illustrate, and analyze living organisms within local ecosystems as part of interconnected food webs, populations, and communities.

IE7.2.b: Provide examples of ecosystems of varying sizes and locations, including their biotic and abiotic components.

Coral Reefs 1 - Abiotic Factors
Pond Ecosystem

IE7.2.c: Conduct a field study to observe, record (using sketches, notes, tables, photographs, and/or video recordings), and identify biotic and abiotic components of a local ecosystem.

Pond Ecosystem

IE7.2.e: Examine the biotic and abiotic components of distant ecosystems using photographs, videos, or online resources.

Pond Ecosystem

IE7.2.g: Compile and display ecological data to illustrate the various interactions that occur among biotic and abiotic components of ecosystems.

Pond Ecosystem

IE7.2.h: Identify strengths and weaknesses of different methods of collecting and displaying ecological data (e.g., compare field observations of an ecosystem with observations from a video or television program, compare a food chain with a food web).

Forest Ecosystem

IE7.2.i: Classify organisms in a variety of ecosystems as producers, consumers, or decomposers and further classify consumers as herbivores, carnivores, or omnivores.

Coral Reefs 1 - Abiotic Factors
Food Chain
Forest Ecosystem
Prairie Ecosystem

IE7.2.j: Interpret interdependence within natural systems by constructing food chains and food webs to illustrate the interactions among producers, consumers, and decomposers in a particular ecosystem.

Coral Reefs 1 - Abiotic Factors
Food Chain
Forest Ecosystem
Prairie Ecosystem

IE7.2.k: Construct a classification key, using appropriate scientific terminology, which will enable classmates to differentiate between producers, consumers, and decomposers.

Food Chain
Forest Ecosystem

IE7.3: Evaluate biogeochemical cycles (water, carbon, and nitrogen) as representations of energy flow and the cycling of matter through ecosystems.

IE7.3.b: Model the carbon, nitrogen, and water cycles to illustrate how matter cycles through ecosystems.

Carbon Cycle
Cell Energy Cycle
Water Cycle

IE7.3.c: Analyze the strengths and limitations of models in science generally, and then apply these criteria to evaluate the efficacy of a student model of a biogeochemical cycle.

Cell Energy Cycle

IE7.3.d: Explain the role of decomposers in recycling matter in an ecosystem.

Forest Ecosystem

IE7.3.e: Describe examples of how scientists collect evidence, search for patterns and relationships in data, and propose explanations to further the development of scientific knowledge about energy and matter flow in ecosystems.

Carbon Cycle

IE7.3.f: Design and conduct an experiment to investigate the conditions essential for the growth of plants (e.g., determine whether nutrients in soil are sufficient to support plant growth, determine the influence of sunlight or other forms of light on plant growth).

Growing Plants
Seed Germination

IE7.3.h: Describe how energy passes through ecosystems during the processes of photosynthesis and cellular respiration.

Cell Energy Cycle
Food Chain
Pond Ecosystem

IE7.3.i: Identify and evaluate potential impacts on energy flow and the cycling of matter by the removal of one or more living organisms from a specific ecosystem.

Cell Energy Cycle
Food Chain

IE7.4: Analyze how ecosystems change in response to natural and human influences, and propose actions to reduce the impact of human behaviour on a specific ecosystem.

IE7.4.c: Predict what a specific ecosystem (e.g., clear-cut forest, abandoned sports field, abandoned farm yard, abandoned rail line, ditch, driveway, or sidewalk) will look like in the future (e.g., 5, 10, and 25 years) based on characteristics of the area and long-term changes observed in similar ecosystems.

Coral Reefs 1 - Abiotic Factors

IE7.4.d: Identify and refine questions and problems related to the effects of natural or human influences on a particular ecosystem.

Coral Reefs 1 - Abiotic Factors
Coral Reefs 2 - Biotic Factors
Pond Ecosystem
Water Pollution

IE7.4.e: Select and synthesize information from various sources to develop a response to specific questions related to natural or human influences on a particular ecosystem.

Coral Reefs 2 - Biotic Factors
Pond Ecosystem

IE7.4.f: Propose a course of action or defend a given position on a local ecological issue or problem related to natural or human influences on a particular ecosystem, taking into account scientific, societal, technological, and environmental factors.

Pond Ecosystem

MS7: Mixtures and Solutions

MS7.1: Distinguish between pure substances and mixtures (mechanical mixtures and solutions) using the particle model of matter.

MS7.1.a: Examine a variety of objects and materials, and record qualitative (e.g., colour, texture, and state of matter) and quantitative (e.g., density, melting point, and freezing point) physical properties of those objects in a chart or data table.

Color Absorption
Density Experiment: Slice and Dice
Density Laboratory
Heat Absorption
Mineral Identification
Phases of Water

HT7: Heat and Temperature

HT7.1: Assess the impact of past and current heating and cooling technologies related to food, clothing, and shelter on self, society, and the environment.

HT7.1.b: Communicate questions, ideas, intentions, plans, and results of inquiries related to heat transmission using lists, notes in point form, sentences, data tables, graphs, drawings, oral language, and other means.

Graphing Skills
Heat Absorption
Heat Transfer by Conduction
Identifying Nutrients
Radiation

HT7.1.d: Compare, in qualitative terms, the heat capacities of some common materials, including water, and explain how heat capacity influences choices of materials used in the development of technologies related to clothing, food, and shelter.

Heat Absorption

HT7.2: Explain how understanding differences between states of matter and the effect of heat on changes in state provide evidence for the particle theory.

HT7.2.c: Construct and label a heating curve for water, using student-collected data, indicating states of matter and changes of state.

Phases of Water

HT7.2.d: Create a visual or dramatic representation to explain changes of state of matter (e.g., melting, freezing, evaporation, condensation, and sublimation) according to the particle model of matter.

Phases of Water

HT7.2.e: Choose appropriate instruments (e.g. alcohol thermometer, temperature probe, and thermocouple) and use them safely, effectively, and accurately for collecting temperature data when investigating states of matter and changes of state.

Phases of Water

HT7.2.g: Distinguish between heat and temperature using the concept of kinetic energy and the particle model of matter.

Energy Conversion in a System
Temperature and Particle Motion

HT7.2.h: Explain how evidence gathered while investigating states of matter and changes in states of matter supports or refutes the particle theory of matter.

Phases of Water

HT7.3: Investigate principles and applications of heat transfer via the processes of conduction, convection, and radiation.

HT7.3.a: Demonstrate and explain how heat is transferred by the processes of conduction, convection, and radiation in solids, liquids, and gases.

Conduction and Convection
Heat Transfer by Conduction
Radiation

HT7.3.b: Construct a visual or dramatic representation of heat transfer via conduction in a solid.

Conduction and Convection
Heat Transfer by Conduction

HT7.3.d: Assess the impacts on self, society, and the environment, of conduction, convection, and radiation in the natural and constructed world (e.g., heating over cities, temperature layers in lakes, thunderstorms, radiant heaters, refrigerators, and convection currents in air or water).

Conduction and Convection
Heat Transfer by Conduction

HT7.3.e: Evaluate applications of technologies designed to enhance or restrict the transfer of heat energy via conduction, convection, or radiation (e.g., metal frying pans, radiant heaters, home insulation, ovens, convection ovens, thermoses, winter parkas, and heat exchangers) using student-developed criteria.

Radiation

HT7.3.f: Design and carry out an experiment to determine differences in the ability of various surfaces to absorb and reflect radiant heat.

Heat Absorption

EC7: Earthâ??s Crust and Resources

EC7.1: Analyze societal and environmental impacts of historical and current catastrophic geological events, and scientific understanding of movements and forces within Earthâ??s crust.

EC7.1.a: Trace the development of plate tectonics theory as an explanation for movement of Earthâ??s lithosphere in light of new geological evidence, including knowledge of tectonic plates and movement at plate boundaries.

Plate Tectonics

EC7.1.b: Provide examples of past theories and ideas, including cultural mythology, that explain geological phenomena such as volcanic activity, earthquakes, and mountain building.

Plate Tectonics

EC7.1.d: Create models or simulations of the processes of mountain formation and the folding and faulting of Earthâ??s surface, including movements at diverging, converging, and transform plate boundaries.

Plate Tectonics

EC7.1.g: Organize data on the geographical and chronological distribution of earthquakes, tsunamis, and volcanic eruptions to determine patterns and trends in data and relationships among variables.

Earthquakes 1 - Recording Station
Plate Tectonics

EC7.2: Identify locations and processes used to extract Earthâ??s geological resources and examine the impacts of those locations and processes on society and the environment.

EC7.2.c: Classify rocks and minerals based on physical properties such as colour, hardness, cleavage, lustre, and streak.

Mineral Identification

EC7.3: Investigate the characteristics and formation of the surface geology of Saskatchewan, including soil, and identify correlations between the surface geology and past, present, and possible future land uses.

EC7.3.a: Model the processes of formation of the three major types of rocks: sedimentary, igneous, and metamorphic.

Rock Classification
Rock Cycle

EC7.3.c: Construct a visual representation of the rock cycle (e.g., formation, weathering, sedimentation, and reformation) and relate this representation to the surface geology of Saskatchewan and Canada.

Rock Cycle

EC7.3.d: Develop and use a classification key for rocks based on physical characteristics and method of formation.

Rock Cycle

EC7.3.e: Describe examples of mechanical and chemical weathering of rocks.

Rock Cycle

EC7.3.l: Assess environmental and economic impacts of past and current land use practices in Saskatchewan (e.g., agriculture, urban development, recreation, and road construction), and describe intended and unintended consequences of those practices on self, society, and the environment, including soil degradation.

Rabbit Population by Season

Correlation last revised: 9/24/2019

This correlation lists the recommended Gizmos for this province's curriculum standards. Click any Gizmo title below for more information.