1: The Changing Earth

1.1: Attitudes

1.1.1: develop a questioning attitude about changing life forms and environmental conditions on Earth

1.1.1.A: forces deep within Earth cause continual changes on Earth's surface, by:

1.1.1.A.2: describing the theory of plate tectonics and identifying pieces of evidence that support the theory; e.g., location of volcanoes and earthquakes, ocean floor spreading, patterns in mountain structure

Plate Tectonics

1.1.1.A.3: describing how radioactive decay could be the source of geothermal energy

Half-life
Nuclear Decay

1.1.1.A.4: explaining how convection circulation of molten material provides the driving force of plate tectonics

Plate Tectonics

1.1.1.A.5: explaining how the energy from earthquakes is transmitted by seismic waves

Earthquake - Determination of Epicenter
Earthquake - Recording Station

1.1.1.A.1: identifying and describing the three layers of Earth: lithosphere, asthenosphere and mesosphere, in terms of density, composition and thickness

1.1.1.A.1.a: longitudinal (particles vibrate parallel to the direction of propagation); i.e., P-waves

Earthquake - Determination of Epicenter
Earthquake - Recording Station
Sound Beats and Sine Waves

1.1.1.A.1.b: transverse (particles vibrate perpendicular to the direction of propagation); i.e., S-waves

Earthquake - Recording Station

1.1.1.A.6: explaining how seismic waves are used to provide information about the internal structure of Earth

Earthquake - Determination of Epicenter
Earthquake - Recording Station

1.1.2: look for consistency in the data coming from different geological sources

1.1.2.A: comparing the magnitude of earthquakes, given their rating on the Richter scale

Earthquake - Determination of Epicenter
Earthquake - Recording Station

1.1.2.B: evaluating the theory of plate tectonics in terms of its ability to explain and predict changes in Earth's surface

Plate Tectonics

1.1.2.C: demonstrating the difference between primary and secondary earthquake waves, with the use of a flexible coil

Earthquake - Determination of Epicenter
Earthquake - Recording Station

1.1.2.D: determining the location and magnitude of an earthquake, given P- and S-wave data, maps and conversion charts.

Earthquake - Determination of Epicenter
Earthquake - Recording Station

1.1.3: respect the role of empirical evidence in developing scientific theories related to changing life forms and environmental conditions

1.1.3.A: understanding how forces within Earth cause changes on Earth's surface, the theory of plate tectonics, and its ability to explain earthquakes; how the measurement of seismic waves provides information about the internal structure of Earth and is useful in locating and predicting earthquakes, within the context of:

1.1.3.A.1: describing a recent earthquake, the technology used to measure the magnitude and location of earthquakes, and the limitations of current methods used to predict earthquakes

Earthquake - Determination of Epicenter
Earthquake - Recording Station

1.1.3.A.2: explaining, in terms of scientific and technological principles, how more accurate predictions of earthquakes, and the use of earthquake-resistant buildings, would benefit millions of people globally; and analyzing how human environments can be made more earthquake resistant

Earthquake - Determination of Epicenter
Earthquake - Recording Station

1.1.3.A.3: any other relevant context.

Earthquake - Determination of Epicenter
Earthquake - Recording Station
Plate Tectonics

1.2: Paleontology, the scientific study of ancient life, uses fossils as the primary source of data.

1.2.1: Knowledge

1.2.1.A: fossils are used in the study of ancient life, by extending from Science 8, Unit 4, the knowledge that the diversity of rocks on Earth today is the result of processes redistributing components of the original igneous rocks, and by:

1.2.1.A.1: defining radioisotope, radioactive decay and half-life

Half-life

1.2.1.A.2: describing the radiometric procedures used to estimate the age of minerals and fossils

Half-life

1.2.1.A.3: explaining how the layers in sedimentary rock, together with the fossils they contain, form a chronology of natural history

Rock Cycle

1.2.2: Skills

1.2.2.A: identifying examples of igneous, metamorphic and sedimentary rocks

Rock Classification
Rock Cycle

1.2.2.B: interpreting data from radiometric dating of minerals and fossils, using the concept of half-life

Half-life
Human Evolution - Skull Analysis

1.2.2.D: making inferences about the characteristics of life forms, based on the fossil record

Human Evolution - Skull Analysis

1.2.2.E: making inferences about climate, based on the fossil record

Coastal Winds and Clouds
Seasons: Earth, Moon, and Sun

1.2.3: STS Connections

1.2.3.A: understanding how paleontology and the analysis of fossils and minerals, through radiometric dating, has led to knowledge of ancient life and climate on Earth; and by interpreting data obtained from rocks, minerals and fossils in order to make inferences about ancient life forms and climate, within the context of:

1.2.3.A.1: describing, in general terms, the functioning of radiometric dating technology and its use in gathering evidence of prehistoric life

Half-life

1.2.3.A.2: describing the research conducted at the Royal Tyrell Museum of Paleontology and other cooperative research projects, such as the Canada/China project, which have provided a better understanding of ancient life and climate on Earth

Half-life

1.2.3.A.4: describing how paleontologists gather and interpret evidence of ancient life, explaining the central role of evidence in the accumulation of knowledge, and the way in which proposed theories may be supported, modified or refuted

Human Evolution - Skull Analysis

1.2.3.A.5: any other relevant context.

Half-life
Human Evolution - Skull Analysis

1.3: The fossil record indicates that the environment and life forms on Earth have undergone a sequence of changes over more than 3.5 billion years.

1.3.1: Knowledge

1.3.1.A: the fossil record indicates that changes in life forms and environment have occurred on Earth, by:

1.3.1.A.1: explaining why oxygen was not a significant component of Earth's atmosphere until photosynthesis and chlorophyll evolved

Interdependence of Plants and Animals
Photosynthesis Lab

1.3.1.A.2: explaining the view of evolution as a gradual and persistent modification over a very long time

Human Evolution - Skull Analysis

1.3.1.A.6: describing the common types of rock formation that serve as reservoirs for oil and gas.

Rock Classification

1.3.3: STS Connections

1.3.3.A: understanding the significance of the fossil record in indicating how the environment and life forms have changed on Earth; the role of inherited variations and the theory of evolution in explaining these changes; and by assessing traditional and alternative views of evolution, within the context of:

1.3.3.A.1: explaining the scientific principles involved in using fossils and seismic surveying in oil exploration

Earthquake - Determination of Epicenter

1.3.3.A.3: explaining the central role of the fossil record in the accumulation of knowledge about changes that occurred on Earth over time, and that current scientific knowledge is unable to provide complete answers to all questions

Human Evolution - Skull Analysis

1.3.3.A.4: any other relevant context.

Human Evolution - Skull Analysis

1.4: The geologic record indicates that dramatic variations in Earth's climate have occurred over the last two million years.

1.4.1: Knowledge

1.4.1.A: the geologic record indicates that dramatic variations in Earth's climate have occurred over the last two million years, by extending from Science 10, Unit 1, how energy from the Sun determines climate, and by:

1.4.1.A.4: explaining, qualitatively, how the geometry of Earth's orbit around the Sun could account for periods of glaciation

Seasons Around the World
Seasons in 3D
Seasons: Earth, Moon, and Sun
Seasons: Why do we have them?

1.4.1.A.5: explaining how changes in the composition of the atmosphere could cause major changes in Earth's climate

Greenhouse Effect

1.4.3: STS Connections

1.4.3.A: understanding the geologic evidence for the existence and causes of the ice ages and their relationship to climate change; and by interpreting topographical features and drainage patterns in terms of past glaciation; making inferences from ice cores, and evaluating and synthesizing current predictions of global climatic change, within the context of:

1.4.3.A.5: any other relevant context.

Greenhouse Effect

2: Changes in Living Systems

2.1: Attitudes

2.1.1: appreciate the unity of science through the application of physical and chemical principles and measurements to biological systems

Food Chain

2.1.1.A: matter cycles through the biosphere, changing location and chemical combination, by extending from Science 10, Unit 1, the relationship between solar energy and the hydrologic cycle, and by:

2.1.1.A.1: describing the hydrologic cycle in detail, including the underground movement and storage of water

Water Cycle

2.1.1.A.2: outlining the biogeochemical cycles of carbon, oxygen and nitrogen

Cell Energy Cycle
Interdependence of Plants and Animals
Photosynthesis Lab

2.1.1.A.3: explaining why carbon dioxide levels in the atmosphere are much lower now than they were in Earth's early history.

Cell Energy Cycle
Interdependence of Plants and Animals
Photosynthesis Lab

2.1.2: appreciate that biological principles emerge from the investigation of the structures and functions of biological systems

2.1.2.A: analyzing and interpreting the rates of precipitation and evaporation in the local area, and comparing the data to long-term trends

Water Cycle

2.1.2.C: formulating hypotheses on how alterations in the carbon cycle, as a result of the burning of fossil fuels, might influence other cycling phenomena, and suggesting how the hypotheses could be tested.

Cell Energy Cycle
Interdependence of Plants and Animals
Photosynthesis Lab

2.1.3: appreciate that biological principles apply to all levels of biological organization

2.1.3.A: understanding the cycling of matter through the biosphere, including the hydrologic cycle and the biogeochemical cycles; and by collecting data, measuring, comparing and formulating testable hypotheses, within the context of:

2.1.3.A.1: describing the importance of aquifers in supplying fresh water to many parts of the world, and assessing, qualitatively, the risks and benefits to the environment and quality of life of using deep-well injection to dispose of waste materials

Water Cycle

2.1.3.A.3: analyzing the greenhouse effect in terms of the biogeochemical cycling of carbon, and the limitations of scientific knowledge and technology in providing complete answers to all questions

Cell Energy Cycle
Greenhouse Effect
Interdependence of Plants and Animals
Photosynthesis Lab

2.1.3.A.5: any other relevant context.

Food Chain
Water Cycle

2.2: Energy flows through the biosphere.

2.2.1: Knowledge

2.2.1.A: solar energy flows through ecosystems, by extending from Science 10, Unit 2, how solar energy is trapped by photosynthesis, and by:

2.2.1.A.1: describing how energy moves through trophic levels, using the concepts of food chains and webs, using specific examples of autotrophs and heterotrophs

Food Chain

2.2.1.A.2: explaining how trophic levels can be described in terms of pyramids of numbers, biomass or energy

Food Chain
Interdependence of Plants and Animals

2.2.2: Skills

2.2.2.A: constructing, from data on the energy available at various tropic levels, a food chain to show the numbers of organisms consumed at each level

Food Chain

2.2.2.B: designing a model to explain the relationship between the populations of predator and prey, outlining the characteristics of each that adapt them to their trophic level.

Food Chain

2.2.3: STS Connections

2.2.3.A: understanding energy flow through the biosphere, using biotic relationships, food chains, webs and pyramids; and by hypothesizing, designing models and performing simulations, within the context of:

2.2.3.A.1: describing how the movement of energy and matter through food chains and webs that may concentrate pollutants by biological magnification has implications for protecting the environment for future generations

Food Chain

2.2.3.A.3: any other relevant context.

Food Chain

2.3: Ecosystems are defined by a range of characteristics.

2.3.2: Skills

2.3.2.A: performing a field study and measuring, quantitatively and qualitatively, appropriate biotic and abiotic factors in the aquatic or terrestrial ecosystem chosen, and presenting the data in a form that describes, in general terms, the structure of the ecosystem; e.g., pH, temperature, precipitation, hardness, oxygen content, humidity, invertebrates, vertebrates, plants

Relative Humidity

2.3.2.B: performing a field study and measuring, quantitatively and qualitatively, appropriate biotic and abiotic factors in the aquatic or terrestrial ecosystem chosen, and presenting the data in a form that describes, in general terms, the structure of the ecosystem; e.g., pH, temperature, precipitation, hardness, oxygen content, humidity, invertebrates, vertebrates, plants

Relative Humidity

2.3.3: STS Connections

2.3.3.A: understanding the range of factors that define ecosystems through the study of a natural ecosystem; and by measuring and recording relevant quantitative and qualitative data, inferring biotic relationships from data collected and presenting the information, within the context of:

2.3.3.A.1: reviewing factors in terms of the limitations of scientific knowledge and technology, that may influence the natural quality of water in freshwater ecosystems

Water Pollution

2.3.3.A.3: any other relevant context.

Food Chain

2.4: Ecosystems often change over time.

2.4.3: STS Connections

2.4.3.A: understanding that ecosystems and communities change over time, by describing their stages of primary or secondary succession; and by researching, observing, recording, tabulating, graphing and interpreting, within the context of:

2.4.3.A.2: evaluating the impact of secondary succession on society following dramatic disturbances in natural ecosystems; e.g., Frank Slide, Mount St. Helens, strip mining, clear cutting

Food Chain

2.4.3.A.3: any other relevant context.

Food Chain

2.5: Organisms are adapted to their environments.

2.5.1: Knowledge

2.5.1.A: how populations of plant and animal species adapt to a changing environment, by:

2.5.1.A.1: describing the range of variation in species and populations

Food Chain

2.5.1.A.2: explaining the principles of survival of the fittest and natural selection

Evolution: Mutation and Selection
Natural Selection

2.5.1.A.3: exploring the factors that limit the size of populations.

Food Chain
Rabbit Population by Season

2.5.2: Skills

2.5.2.A: examining homologous structures in a range of fossil and living species, and inferring the adaptive significance of variations observed

Human Evolution - Skull Analysis

2.5.3: STS Connections

2.5.3.A: understanding the role and influence of variation, fitness, natural selection and population growth on the adaptation of organisms to their environments; and by inferring from observation; and by hypothesizing trends from experiments or simulations, within the context of:

2.5.3.A.3: any other relevant context.

Evolution: Mutation and Selection
Natural Selection
Rainfall and Bird Beaks

3: Chemical Changes

3.1: Attitudes

3.1.4: develop an appreciation for the usefulness and importance of stoichiometric methods in science and in industry

Stoichiometry

3.1.1: develop a questioning attitude and a desire to understand more about matter and its changes

3.1.1.A: aqueous solutions provide a convenient medium for chemical changes, by extending from Science 8, Unit 1, the meaning of the terms solute, solvent, solution, dissolving and solubility, and by:

3.1.1.A.2: differentiating on the basis of properties among electrolytes, nonelectrolytes, acids and bases

pH Analysis
pH Analysis: Quad Color Indicator

3.1.1.A.4: using chemical names and formulas for dissolved substances, acids and bases

Dehydration Synthesis

3.1.1.A.5: calculating the concentration of solutions in a variety of ways, including moles per litre, and calculating mass or volume when the concentration is known; e.g., per cent by volume, parts per million (ppm)

Colligative Properties

3.1.2: develop an awareness of the importance of water as a medium for chemical reactions

3.1.2.B: preparing solutions of specified concentrations, using a balance and volumetric glassware

Triple Beam Balance

3.1.3: appreciate that observations are the foundation for generalizations and explanations about chemical change

3.1.3.A: understanding dissolving, aqueous solutions and concentration; and by investigating the properties of solutions, preparing solutions of specific concentration and identifying ions in solution, within the context of:

3.1.3.A.1: relating the properties of electrolytes, nonelectrolytes, acids and bases and reactions in aqueous solution to solutions and processes in everyday life

pH Analysis
pH Analysis: Quad Color Indicator

3.1.3.A.2: comparing the ways in which concentrations of solutions are expressed in the chemistry laboratory (moles per litre), in industry (a variety of ways), in household products (per cent by volume) and in environmental studies (parts per million), then evaluating the importance of concentration in relation to biomagnification and risk management

Colligative Properties

3.1.3.A.4: any other relevant context.

Colligative Properties

3.2: Balanced chemical equations show the quantitative relationships between the reactants and products involved in chemical reactions.

3.2.1: Knowledge

3.2.1.A: the mole ratios in balanced chemical reaction equations provide quantitative information about the substances involved, by recalling from Science 10, Unit 3, how to balance chemical equations, and by:

3.2.1.A.1: predicting, using stoichiometry, the quantities of products and reactants involved in chemical reactions, given the reaction equation and the limiting reagent.

Balancing Chemical Equations
Chemical Equation Balancing
Limiting Reactants
Stoichiometry

3.2.2: Skills

3.2.2.B: performing simple experiments to illustrate the validity of the assumptions contained in stoichiometric methods, given the reaction equation and the limiting reagent

Balancing Chemical Equations
Chemical Equation Balancing
Limiting Reactants
Stoichiometry

3.2.2.C: evaluating the design of stoichiometric experiments.

Stoichiometry

3.2.3: STS Connections

3.2.3.A: understanding the quantitative relationships in a balanced chemical equation; and by performing stoichiometric experiments and calculations, within the context of:

3.2.3.A.1: relating stoichiometric methods to chemical processes, such as the production of fertilizers, metal extraction and burning fossil fuels

Stoichiometry

3.2.3.A.2: relating stoichiometric methods to such chemical processes as cooking, cleaning and gardening

Stoichiometry

3.2.3.A.3: any other relevant context.

Balancing Chemical Equations
Chemical Equation Balancing

3.3: Oxidation and reduction reactions are an example of chemical change involving energy.

3.3.3: STS Connections

3.3.3.A: understanding the activity series and oxidation- reduction; and by constructing, observing and describing electrolytic and electrochemical cells, within the context of:

3.3.3.A.1: identifying examples and making analogies among oxidation-reduction occurring in everyday processes; e.g., corrosion, combustion, photosynthesis, respiration

Photosynthesis Lab

4: Changes in Motion

4.1: Attitudes

4.1.1: appreciate the need for computational competence in quantifying motion and momentum

Roller Coaster Physics

4.1.1.A: motion is described in terms of displacement, time, velocity and acceleration, by extending from Science 10, Unit 4, the principles of one-dimensional uniform motion, and by:

4.1.1.A.1: comparing scalar and vector quantities

Atwood Machine

4.1.1.A.2: comparing distance and displacement, and speed and velocity

Distance-Time Graphs
Roller Coaster Physics

4.1.1.A.3: defining velocity as a change in position during a time interval, v = delta d/delta t

Distance-Time Graphs

4.1.1.A.4: defining acceleration as a change in velocity during a time interval, a = delta v/delta t

Freefall Laboratory
Inclined Plane - Sliding Objects
Uniform Circular Motion

4.1.2: appreciate the need for empirical evidence in interpreting observed phenomena

4.1.2.A: gathering data necessary to infer the relationships among acceleration, velocity and time

Distance-Time and Velocity-Time Graphs
Fan Cart Physics
Freefall Laboratory
Inclined Plane - Sliding Objects
Uniform Circular Motion

4.1.2.B: determining velocity, displacement and acceleration from position-time and velocity-time graphs

Distance-Time Graphs
Distance-Time and Velocity-Time Graphs
Fan Cart Physics
Freefall Laboratory
Inclined Plane - Sliding Objects
Roller Coaster Physics

4.1.2.C: obtaining new data from straight-line graphs by determining the slope of the line and the area under the line

Slope - Activity B

4.1.2.D: performing and evaluating an experiment to determine the local value of the acceleration due to gravity

Atwood Machine
Freefall Laboratory
Golf Range!
Inclined Plane - Sliding Objects

4.1.2.E: solving uniform motion and uniform accelerated motion problems, involving the relationships d = vi t 1/2 at² and d = ((vi + vf)/2)t

Inclined Plane - Sliding Objects

4.1.3: appreciate the restricted nature of evidence when interpreting the results of physical interactions

4.1.3.A: understanding and explaining, quantitatively, linear motion in terms of displacement, time, velocity and acceleration; and by gathering, numerically analyzing and graphing relevant data, within the context of:

4.1.3.A.1: determining safe lengths for airport runways, and freeway entrance and exit ramps, in terms of kinematics principles

Fan Cart Physics
Inclined Plane - Sliding Objects

4.1.3.A.2: analyzing traffic control light patterns, using kinematics principles

Distance-Time Graphs
Distance-Time and Velocity-Time Graphs
Inclined Plane - Sliding Objects

4.1.3.A.3: any other relevant context.

Atwood Machine
Distance-Time Graphs
Distance-Time and Velocity-Time Graphs
Fan Cart Physics
Freefall Laboratory
Inclined Plane - Sliding Objects

4.2: Newton's laws of motion relate force to the motion of objects.

4.2.1: Knowledge

4.2.1.A: Newton's laws of motion describe the effects of forces on the motion of bodies, by extending from Science 7, Unit 3, the concepts of force, inertia and friction, and by:

4.2.1.A.3: applying Newton's first law of motion to explain an object's state of rest or uniform motion

Fan Cart Physics
Uniform Circular Motion

4.2.1.A.4: applying Newton's second law of motion, and using it to relate force, mass and motion

Atwood Machine
Fan Cart Physics

4.2.1.A.5: applying Newton's third law of motion to explain situations where objects interact.

Atwood Machine
Fan Cart Physics
Uniform Circular Motion

4.2.2: Skills

4.2.2.A: gathering data necessary to infer the relationships among acceleration, force and mass

Fan Cart Physics

4.2.2.C: solving, numerically, linear motion problems, using Newton's second law of motion

Atwood Machine
Fan Cart Physics
Inclined Plane - Sliding Objects

4.2.2.D: solving linear motion problems involving friction.

Atwood Machine
Inclined Plane - Simple Machine
Inclined Plane - Sliding Objects
Roller Coaster Physics

4.2.3: STS Connections

4.2.3.A: understanding the effects of forces on the linear motion of objects described in terms of force, mass, acceleration and momentum, and analyzed in terms of Newton's laws of motion; and by gathering and numerically analyzing relevant data, within the context of:

4.2.3.A.1: explaining the movement of passengers inside a moving car in terms of Newton's first law of motion

Fan Cart Physics
Uniform Circular Motion

4.2.3.A.3: establishing the relationship between the principles of mechanics and the need for legislation, such as seat belts and speed limits in terms of the influence of the needs, interests and financial support of society

Distance-Time Graphs

4.2.3.A.5: any other relevant context.

2D Collisions
Air Track
Atwood Machine
Fan Cart Physics
Inclined Plane - Sliding Objects

4.3: An object moving in a circular path, with a constant speed, undergoes an acceleration toward the centre of the circle.

4.3.1: Knowledge

4.3.1.A: uniform circular motion requires an unbalanced force of constant magnitude, by:

4.3.1.A.1: describing uniform circular motion as a special case of two-dimensional motion

Uniform Circular Motion

4.3.1.A.3: applying the centripetal force and acceleration equations to uniform circular motion

Uniform Circular Motion

4.3.1.A.4: applying the centripetal force and acceleration equations to uniform circular motion Fg = (Gm1m2)/r², as it applies to planetary and satellite motion.

Uniform Circular Motion

4.3.2: Skills

4.3.2.A: performing and evaluating an experiment to investigate the relationship between centripetal force and centripetal acceleration.

Uniform Circular Motion

4.3.3: STS Connections

4.3.3.A: understanding, explaining and using the relationship among uniform circular motion, Newton's universal law of gravitation and Kepler's laws; and by investigating the relationship between centripetal force and centripetal acceleration, and solving satellite motion problems, within the context of:

4.3.3.A.5: explaining, qualitatively, how Kepler's laws were used to test Newton's universal law of gravitation

Atwood Machine
Orbital Motion - Kepler's Laws

4.3.3.A.6: any other relevant context.

Orbital Motion - Kepler's Laws
Uniform Circular Motion

4.4: Momentum is conserved in physical interactions.

4.4.1: Knowledge

4.4.1.A: the total momentum of any system of revolving or colliding bodies remains constant in the absence of outside forces, by:

4.4.1.A.1: defining momentum as a quantity of motion equal to the product of the mass and the velocity of an object p = mv

2D Collisions
Air Track
Roller Coaster Physics

4.4.1.A.2: relating the role of change in momentum to acceleration delta p/delta t = ma

Freefall Laboratory

4.4.1.A.3: applying the law of conservation of momentum to linear collisions and explosions m1v1 + m2v2 = m1v'1 + m2v'2

2D Collisions
Air Track

4.4.2: Skills

4.4.2.A: performing and evaluating an experiment that illustrates the law of conservation of momentum

2D Collisions
Air Track

4.4.2.B: solving one-dimensional momentum problems, using numerical means, scale diagrams and vector addition.

2D Collisions
Air Track

4.4.3: STS Connections

4.4.3.A: understanding and explaining the conservation of the total momentum of a system of objects in the absence of outside forces, numerically and graphically; and by performing and evaluating an experiment that illustrates the conservation of momentum to solve a one-dimensional momentum problem, using scale diagrams and vector methods, within the context of:

4.4.3.A.1: investigating traffic accidents in terms of the principles of mechanics and the conservation of momentum

2D Collisions
Air Track

4.4.3.A.2: analyzing throwing, catching and striking in sports in terms of relevant scientific principles

2D Collisions

4.4.3.A.3: any other relevant context.

2D Collisions
Air Track

Correlation last revised: 2/26/2010

This correlation lists the recommended Gizmos for this province's curriculum standards. Click any Gizmo title below for more information.