2: Materials exist throughout our physical world. The structures of materials influence their physical properties, chemical reactivity and use.

2.1: The structures of materials determine their properties.

2.1.1: Explain that matter is composed of tiny particles called atoms that are unique to each element, and that atoms are composed of subatomic particles called protons, neutrons, and electrons.

Element Builder

2.1.2: Describe the relative charge, approximate mass, and location of protons, neutrons, and electrons in an atom.

Element Builder

2.1.6: Describe isotopes of elements in terms of protons, neutrons, electrons, and average atomic masses. Recognize that isotopes of the same element have essentially the same chemical properties that are determined by the proton and electron number.

Element Builder

2.1.7: Use the Periodic Table to identify an element's atomic number, valence electron number, atomic mass, group/family and be able to classify the element as a metal, non-metal or metalloid.

Electron Configuration
Element Builder
Ionic Bonds

2.1.8: Determine the physical and chemical properties of an element based on its location on the Periodic Table.

Electron Configuration

2.1.9: Investigate differences between the properties of various elements in order to predict the element's location on the Periodic Table.

Electron Configuration
Element Builder

2.1.10: Use the Periodic Table to predict the types of chemical bonds (e.g., ionic or covalent) in a variety of compounds.

Covalent Bonds
Ionic Bonds

2.1.11: Use models or drawings to illustrate how molecules are formed when two or more atoms are held together in covalent bonds by "sharing" electrons. Use models or drawings to illustrate how ionic compounds are formed when two or more atoms "transfer" electrons and are held together in ionic bonds.

Covalent Bonds
Ionic Bonds

2.1.12: Explain how an atom's electron arrangement influences its ability to transfer or share electrons and is related its position on the periodic table. Recognize that an atom in which the positive and negative charges do not balance is an ion.

Covalent Bonds
Electron Configuration
Ionic Bonds

2.1.13: Recognize that metals have the physical properties of conductivity, malleability, luster, and ductility.

Circuit Builder

2.1.16: Conduct investigations to determine the effect of heat energy on the change of state (change of phase) of water. Sketch and interpret graphs representing the melting, freezing, evaporation and condensation of water.

Phase Changes

2.1.18: Apply the kinetic molecular theory to explain that a change in the energy of the particles may result in a temperature change or a change of phase (change in state).

Phase Changes
Temperature and Particle Motion

2.2: The properties of a mixture are based on the properties of its components.

2.2.4: Describe how the process of diffusion or the movement of molecules from an area of high concentration to an area of low concentration (down the concentration gradient) occurs because of molecular collisions.

Diffusion

2.2.6: Measure the pH of a solution using chemical indicators to determine the relative acidity or alkalinity of the solution. Identify the physical properties of acids and bases.

Titration
pH Analysis
pH Analysis: Quad Color Indicator

2.2.7: Investigate factors that affect the materials' solubility in water and construct solubility curves to compare the extent to which the materials dissolve.

Solubility and Temperature

2.3: When materials interact within a closed system, the total mass of the system remains the same.

2.3.1: Conduct and explain the results of simple investigations to demonstrate that the total mass of a substance is conserved during both physical and chemical changes.

Chemical Changes
Chemical Equations

2.4: There are several ways in which elements and/or compounds react to form new substances and each reaction involves energy.

2.4.2: Balance simple chemical equations and explain how these balanced chemical equations represent the conservation of matter.

Balancing Chemical Equations
Chemical Equations

3: The flow of energy drives processes of change in all biological, chemical, physical, and geological systems. Energy stored in a variety of sources can be transformed into other energy forms, which influence many facets of our daily lives. The forms of energy involved and the properties of the materials involved influence the nature of the energy transformations and the mechanisms by which energy is transferred. The conservation of energy is a law that can be used to analyze and build understandings of diverse physical and biological systems.

3.1: Energy takes many forms. These forms can be grouped into types of energy that are associated with the motion of mass (kinetic energy), and types of energy associated with the position of mass and with energy fields (potential energy).

3.1.2: Use diagrams to illustrate the similarities shared by all electromagnetic waves and differences between them. Show how wavelength is used to distinguish the different groups of EM waves (radio waves, microwaves, IR, visible and UV waves, X-rays, and gamma waves).

Herschel Experiment

3.1.3: Conduct investigations involving moving objects to examine the influence that the mass and the speed have on the kinetic energy of the object. Collect and graph data that supports that the kinetic energy depends linearly upon the mass, but nonlinearly upon the speed. Recognize that the kinetic energy of an object depends on the square of its speed, and that KE =½ mv2.

Inclined Plane - Sliding Objects

3.1.4: Collect and graph data that shows that the potential energy of an object increases linearly with the weight of an object (mg) and with its height above a pre-defined reference level, h. (GPE = mgh).

Potential Energy on Shelves
Roller Coaster Physics

3.1.6: Recognize that the energy stored in a stretched elastic material is proportional to the square of the stretch of the material, and a constant that reflects the elasticity of the material. (Elastic PE = ½ kx2)

Energy of a Pendulum
Inclined Plane - Sliding Objects
Roller Coaster Physics

3.1.7: Explain that heat energy represents the total random kinetic energy of molecules of a substance.

Temperature and Particle Motion

3.2: Changes take place because of the transfer of energy. Energy is transferred to matter through the action of forces. Different forces are responsible for the transfer of the different forms of energy.

3.2.3: Use diagrams or models to explain how mechanical waves can transport energy without transporting matter.

Longitudinal Waves

3.2.5: Recognize that the gravitational force is a universal force of attraction that acts between masses, but this force is only significant when one (or both) of the objects is massive (for example, a star, planet or moon).

Gravitational Force
Pith Ball Lab

3.2.8: Recognize that on Earth, the object would have to be moved several hundred miles above the surface before the decrease in the force of gravity would become detectable.

Gravitational Force
Pith Ball Lab

3.2.11: Describe the role that forces play when energy is transferred between interacting objects and explain how the amount of energy transferred can be calculated from measurable quantities.

Air Track

3.2.12: Give examples of common forces transferring energy to (or away from) objects. For example; a pulling force can transfer energy to an object (when the object is pulled along a floor), a pushing force can transfer energy away from an object (to slow its motion), and friction and air resistance always transfer kinetic energy away from moving objects.

Air Track

3.2.13: Identify that "work" is the process by which a force transfers energy to an object, and use measured quantities to make calculations of the work done by forces (W = energy transferred = F·D).

Pulley Lab

3.2.16: Use models and diagrams to illustrate the structure of the atom. Include information regarding the distribution of electric charge and mass in the atom. Identify the forces that are responsible for the stability of the atom, and which parts of the atom exert and feel these forces.

Element Builder

3.3: Energy readily transforms from one form to another, but these transformations are not always reversible. The details of these transformations depend upon the initial form of the energy and the properties of the materials involved. Energy may transfer into or out of a system and it may change forms, but the total energy cannot change.

3.3.1: Describe why it is significant that energy cannot be created (made) nor destroyed (consumed), and identify that that this property of energy is referred to as the Law of the Conservation of Energy.

Air Track
Energy Conversion in a System
Inclined Plane - Sliding Objects
Roller Coaster Physics

3.3.2: Give examples that illustrate the transfer of energy from one object (or substance) to another, and examples of energy being transformed from one to another.

Energy Conversion in a System

3.3.3: Use energy chains to trace the flow of energy through physical systems. Indicate the source of the energy in each example, and trace the energy until it leaves the system or adopts a form in the system that neither changes nor is transferred. Make qualitative estimates of all the forms of the energy involved and reflect on the consequences of the energy transfers and transformations that take place. For example, trace the flow of the radiant energy carried by sunlight that strikes the roof of a home. Reflect on how the color of the roof (light vs. dark) will have an impact on the ability to heat and cool the house, and possibly the functional lifetime of the roofing materials themselves.

Air Track
Energy Conversion in a System
Inclined Plane - Sliding Objects

3.3.5: Explain that what happens to electromagnetic waves that strike a substance (reflection, transmission, absorption) depends on the wavelength of the waves and the physical properties of the substance.

Herschel Experiment

3.3.6: Investigate how radio waves, microwaves, infrared waves, visible waves and ultraviolet waves behave when they strike different substances.

Herschel Experiment
Refraction
Ripple Tank

3.3.9: Use energy chains to trace the flow of energy in a selective absorption process (e.g., sunburn, Greenhouse Effect, microwave cooking).

Herschel Experiment

3.3.11: Explain that through the action of resistive forces (friction and air resistance) mechanical energy is transformed into heat energy, and because of the random nature of heat energy, transforming all of the heat energy back into mechanical energy (or any other organized form of energy) is impossible. Give examples where organized forms of energy (GPE, elastic PE, the KE of large objects) are transformed into heat energy but the reverse transformations are not possible.

Air Track
Energy Conversion in a System
Energy of a Pendulum
Inclined Plane - Sliding Objects
Roller Coaster Physics

3.3.12: Reflect on why organized forms of energy are more useful than disorganized forms (heat energy).

Energy Conversion in a System

5: Earth's dynamic systems are made up of the solid earth (geosphere), the oceans, lakes, rivers, glaciers and ice sheets (hydrosphere), the atmosphere, and organisms (biosphere). Interactions among these spheres have resulted in ongoing changes to the system. Some of these changes can be measured on a human time scale, but others occur so slowly, that they must be inferred from geological evidence.

5.1: Earth's systems can be broken down into individual components which have observable measurable properties.

5.1.2: Identify a few of the most common elements in the Earth's crust, oceans, and atmosphere and confirm their location on the periodic table. (Example: Si, O, C, N, H, Al). Compare the relative abundance of elements found in the Earth's crust, oceans, and atmosphere. Trace carbon as it cycles through the crust, ocean, and atmosphere.

Carbon Cycle
Cell Energy Cycle

5.1.3: Classify and describe features that are used to distinguish between igneous, sedimentary, and metamorphic rocks.

Rock Classification

5.1.7: Investigate the densities, composition, and relative age of continental (felsic) and oceanic (mafic) rocks. Explain why the continental crust, although thicker in most places, overlies oceanic crust. Use this information to explain why oceanic crust sub ducts below continental crust in convergent plate boundaries and explain the configuration of land masses and ocean basins.

Plate Tectonics

5.2: Earth's components form systems. These systems continually interact at different rates of time, affecting the Earth locally and globally.

5.2.2: Identify volcanic products (lava, mudflow, pyroclastic projectiles, ash, gases) associated with various types of volcanoes and their eruptions. Describe the effect of these products on life and property. Explain how the products of volcanic activity influence both long-term and short-term changes in the Earth system.

Plate Tectonics

5.2.4: Describe how earthquake energy is represented on seismograms and describe how these waves can be used to determine the origin and intensity of earthquakes.

Earthquakes 1 - Recording Station

5.2.5: Use models or computer simulations to demonstrate the processes and origin of landforms at diverging, converging and transform plate boundaries. Show on a map how plate tectonics, earthquakes, and volcanoes are spatially related.

Plate Tectonics

5.2.7: Research and describe evidence that supports the Theory of Plate Tectonics to include rock magnetism and the age of the sea floor.

Plate Tectonics

Correlation last revised: 5/9/2018

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.