## Core Connections Integrated II

• Publisher: CPM 2015
This correlation lists the recommended Gizmos for this textbook. Click any Gizmo title below for more information.

### 1: Exploring Algebraic and Geometric Relationships

#### 1.1: Section 1.1

1.1.1: Attributes of Polygons

1.1.2: More Attributes of Polygons

#### 1.2: Section 1.2

1.2.3: Area as a Product and a Sum

#### 1.3: Section 1.3

1.3.1: Angle Pair Relationships

1.3.2: Angles Formed by Transversals

1.3.3: More Angles Formed by Transversals

1.3.4: Angles and Sides of a Triangle

### 2: Justification and Similarity

#### 2.1: Section 2.1

2.1.1: Triangle Congruence Theorems

2.1.3: Converses

#### 2.2: Section 2.2

2.2.1: Dilations

2.2.2: Similarity

#### 2.3: Section 2.3

2.3.1: Conditions for Triangle Similarity

2.3.2: Determining Similar Triangles

2.3.3: Applying Similarity

### 3: Probability and Trigonometry

#### 3.1: Section 3.1

3.1.2: Using a Tree Diagram

3.1.3: Probability Models

3.1.5: Expected Value

#### 3.2: Section 3.2

3.2.1: Constant Ratios in Right Triangles

3.2.2: Connecting Slope Ratios to Specific Angles

3.2.3: Expanding the Trig Table

3.2.4: The Tangent Ratio

3.2.5: Applying the Tangent Ratio

### 4: Factoring and More Trigonometry

#### 4.1: Section 4.1

4.1.1: Introduction to Factoring Expressions

4.1.4: Factoring Completely

4.1.5: Factoring Special Cases

#### 4.2: Section 4.2

4.2.1: Sine and Cosine Ratios

4.2.4: Trigonometric Applications

#### 5.1: Section 5.1

5.1.1: Investigating the Graphs of Quadratic Functions

5.1.2: Multiple Representations of Quadratic Functions

5.1.3: Zero Product Property

5.1.4: Writing Equations for Quadratic Functions

#### 5.2: Section 5.2

5.2.4: Introduction to the Quadratic Formula

5.2.6: Introducing Complex Numbers

### 6: More Right Triangles

#### 6.1: Section 6.1

6.1.1: Special Right Triangles

6.1.2: Pythagorean Triples

6.1.3: Special Right Triangles and Trigonometry

#### 6.2: Section 6.2

6.2.4: The Number System and Deriving the Quadratic Formula

### 7: Proof and Conditional Probability

#### 7.1: Section 7.1

7.1.1: Explore-Conjecture-Prove

7.1.2: Properties of Rhombi

#### 7.2: Section 7.2

7.2.1: Conditional Probability and Independence

7.2.3: Applications of Probability

### 8: Polygons and Circles

#### 8.1: Section 8.1

8.1.1: Constructing Triangle Centers

#### 8.2: Section 8.2

8.2.1: Angles of Polygons

#### 8.3: Section 8.3

8.3.1: Area Ratios of Similar Figures

8.3.2: Ratios of Similarity

#### 8.4: Section 8.4

8.4.1: A Special Ratio

8.4.2: Arcs and Sectors

8.4.3: Circles in Context

### 9: Modeling with Functions

#### 9.1: Section 9.1

9.1.2: Parabola Investigations

9.1.3: Graphing Form of a Quadratic Function

9.1.4: Transforming the Absolute Value Function

#### 9.3: Section 9.3

9.3.1: Average Rate of Change and Projectile Motion

9.3.4: Combininig Functions

### 10: Circles and More

#### 10.1: Section 10.1

10.1.1: The Equation of a Circle

10.1.2: Completing the Square for Equations of Circles

10.1.3: The Geometric Definition of a Parabola

#### 10.2: Section 10.2

10.2.1: Introduction to Chords

10.2.2: Angles and Arcs

10.2.3: Chords and Angles

### 11: Solids

#### 11.1: Section 11.1

11.1.1: Prisms and Cylinders

#### 11.2: Section 11.2

11.2.1: Volume of a Pyramid

11.2.2: Surface Area and Volume of a Cone

11.2.3: Surface Area and Volume of a Sphere

### 12: Counting and Closure

#### 12.1: Section 12.1

12.1.1: The Fundamental Counting Principle

12.1.2: Permutations

12.1.3: Combinations

#### 12.2: Section 12.2

12.2.1: Using Geometry to Calculate Probability

12.2.4: Some Challenging Probability Problems

Content correlation last revised: 11/25/2020