Apply ratios and proportions to find the weight of a person on the moon (or on another planet). Weigh an object on Earth and on the moon and weigh the person on Earth. Then set up and solve the proportion of the Earth weights to the moon weights.

Beam to Moon (Ratios and Proportions)

Apply ratios and proportions to find the weight of a person on the moon (or on another planet). Weigh an object on Earth and on the moon and weigh the person on Earth. Then set up and solve the proportion of the Earth weights to the moon weights.

Apply ratios and proportions to find the weight of a person on the moon (or on another planet). Weigh an object on Earth and on the moon and weigh the person on Earth. Then set up and solve the proportion of the Earth weights to the moon weights.

Beam to Moon (Ratios and Proportions) - Metric

Apply ratios and proportions to find the weight of a person on the moon (or on another planet). Weigh an object on Earth and on the moon and weigh the person on Earth. Then set up and solve the proportion of the Earth weights to the moon weights.

Investigate the properties of an ideal gas by performing experiments in which the temperature is held constant (Boyle's Law), and others in which the pressure remains fixed (Charles' Law). The pressure is controlled through the placement of masses on the lid of the container, and temperature is controlled with an adjustable heat source.

Boyle's Law and Charles' Law

Investigate the properties of an ideal gas by performing experiments in which the temperature is held constant (Boyle's Law), and others in which the pressure remains fixed (Charles' Law). The pressure is controlled through the placement of masses on the lid of the container, and temperature is controlled with an adjustable heat source.

Explore a wide variety of cells, from bacteria to human neurons, using a compound light microscope. Select a sample to study, then focus on the sample using the coarse and fine focus controls of the microscope. Compare the structures found in different cells, then perform tests to see if the sample is alive.

Cell Types

Explore a wide variety of cells, from bacteria to human neurons, using a compound light microscope. Select a sample to study, then focus on the sample using the coarse and fine focus controls of the microscope. Compare the structures found in different cells, then perform tests to see if the sample is alive.

Go sightseeing in fictional cities all over the world. Learn about coordinates on a graph by navigating around these cities on a grid-like city map. Some landmarks are shown on the map. For others, you are only given the coordinates. Can you find all of them?

City Tour (Coordinates)

Go sightseeing in fictional cities all over the world. Learn about coordinates on a graph by navigating around these cities on a grid-like city map. Some landmarks are shown on the map. For others, you are only given the coordinates. Can you find all of them?

Determine how the physical properties of a solvent are dependent on the number of solute particles present. Measure the vapor pressure, boiling point, freezing point, and osmotic pressure of pure water and a variety of solutions. Compare the effects of four solutes (sucrose, sodium chloride, calcium chloride, and potassium chloride) on these physical properties.

Colligative Properties

Determine how the physical properties of a solvent are dependent on the number of solute particles present. Measure the vapor pressure, boiling point, freezing point, and osmotic pressure of pure water and a variety of solutions. Compare the effects of four solutes (sucrose, sodium chloride, calcium chloride, and potassium chloride) on these physical properties.

Compare average temperatures, precipitation, humidity, and wind speed for a variety of locations across the globe. Explore the influence of latitude, proximity to oceans, elevation, and other factors on climate. Observe how animals and plants are adapted to climate and their environment. This lesson uses U.S. customary units.

Comparing Climates (Customary)

Compare average temperatures, precipitation, humidity, and wind speed for a variety of locations across the globe. Explore the influence of latitude, proximity to oceans, elevation, and other factors on climate. Observe how animals and plants are adapted to climate and their environment. This lesson uses U.S. customary units.

As a physician assistant, students must learn about diffusion to save the life of a person poisoned by chlorine gas that was released into a small town following a train crash.

STEM Case

STEM Case Diffusion

As a physician assistant, students must learn about diffusion to save the life of a person poisoned by chlorine gas that was released into a small town following a train crash.

Using an earthquake recording station, learn how to determine the distance between the station and an earthquake based on the time difference between the arrival of the primary and secondary seismic waves. Use this data to find the epicenter in the Earthquakes 2 - Location of Epicenter Gizmo.

Earthquakes 1 - Recording Station

Using an earthquake recording station, learn how to determine the distance between the station and an earthquake based on the time difference between the arrival of the primary and secondary seismic waves. Use this data to find the epicenter in the Earthquakes 2 - Location of Epicenter Gizmo.

Locate the epicenter of an earthquake by analyzing seismic data from three recording stations. Measure difference in P- and S-wave arrival times, then use data from the Earthquakes 1 - Recording Station Gizmo to find the distance of the epicenter from each station.

Earthquakes 2 - Determination of Epicenter

Locate the epicenter of an earthquake by analyzing seismic data from three recording stations. Measure difference in P- and S-wave arrival times, then use data from the Earthquakes 1 - Recording Station Gizmo to find the distance of the epicenter from each station.

Explore fractions using the Fractionator, the machine that makes fraction tiles. Compare fractions and find equivalent fractions by arranging the tiles on two horizontal rows. Explore simplifying fractions. Add fractions and express sums as improper fractions or mixed numbers.

Equivalent Fractions (Fraction Tiles)

Explore fractions using the Fractionator, the machine that makes fraction tiles. Compare fractions and find equivalent fractions by arranging the tiles on two horizontal rows. Explore simplifying fractions. Add fractions and express sums as improper fractions or mixed numbers.

Grow Wisconsin Fast Plants^{®} in a simulated lab environment. Explore the life cycles of these plants and how their growth is influenced by light, water, and crowding. Practice pollinating the plants using bee sticks, then observe the traits of the offspring plants. Use Punnett squares to model the inheritance of genes for stem color and leaf color for these plants.

Fast Plants^{®} 1 - Growth and Genetics

Grow Wisconsin Fast Plants^{®} in a simulated lab environment. Explore the life cycles of these plants and how their growth is influenced by light, water, and crowding. Practice pollinating the plants using bee sticks, then observe the traits of the offspring plants. Use Punnett squares to model the inheritance of genes for stem color and leaf color for these plants.

In this follow-up to Fast Plants^{®} 1 - Growth and Genetics, continue to explore inheritance of traits in Wisconsin Fast Plants. Infer the genotype of a "mystery P2 parent" of a set of Fast Plants based on the traits of the P1, F1, and F2 plants. Then create designer Fast Plants by selectively breeding plants with desired traits.

Fast Plants^{®} 2 - Mystery Parent

In this follow-up to Fast Plants^{®} 1 - Growth and Genetics, continue to explore inheritance of traits in Wisconsin Fast Plants. Infer the genotype of a "mystery P2 parent" of a set of Fast Plants based on the traits of the P1, F1, and F2 plants. Then create designer Fast Plants by selectively breeding plants with desired traits.

Observe the steps of pollination and fertilization in flowering plants. Help with many parts of the process by dragging pollen grains to the stigma, dragging sperm to the ovules, and removing petals as the fruit begins to grow. Quiz yourself when you are done by dragging vocabulary words to the correct plant structure.

Flower Pollination

Observe the steps of pollination and fertilization in flowering plants. Help with many parts of the process by dragging pollen grains to the stigma, dragging sperm to the ovules, and removing petals as the fruit begins to grow. Quiz yourself when you are done by dragging vocabulary words to the correct plant structure.

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world.

Food Chain

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world.

Use genetic engineering techniques to create corn plants resistant to insect pests or tolerant of herbicides. Identify useful genes from bacteria, insert the desired gene into a corn plant, and then compare the modified plant to a control plant in a lab setting.

Genetic Engineering

Use genetic engineering techniques to create corn plants resistant to insect pests or tolerant of herbicides. Identify useful genes from bacteria, insert the desired gene into a corn plant, and then compare the modified plant to a control plant in a lab setting.

In this follow-up to the Genetic Engineering Gizmo, explore how farmers can maximize yield while limiting ecosystem damage using genetically modified corn. Choose the corn type to plant and the amount of herbicide and insecticide to use, then measure corn yields and monitor wildlife populations and diversity. Observe the long-term effects of pollutants on a nearby stream ecosystem.

GMOs and the Environment

In this follow-up to the Genetic Engineering Gizmo, explore how farmers can maximize yield while limiting ecosystem damage using genetically modified corn. Choose the corn type to plant and the amount of herbicide and insecticide to use, then measure corn yields and monitor wildlife populations and diversity. Observe the long-term effects of pollutants on a nearby stream ecosystem.

What does the graph of a derivative function look like? What can a derivative function tell you about the original function? What can't it tell you? Explore these questions for five different types of functions: linear, quadratic, cubic, absolute value, and sine.

Graphs of Derivative Functions

What does the graph of a derivative function look like? What can a derivative function tell you about the original function? What can't it tell you? Explore these questions for five different types of functions: linear, quadratic, cubic, absolute value, and sine.

Investigate the growth of three common garden plants: tomatoes, beans, and turnips. You can change the amount of light each plant gets, the amount of water added each day, and the type of soil the seed is planted in. Observe the effect of each variable on plant height, plant mass, leaf color and leaf size. Determine what conditions produce the tallest and healthiest plants. Height and mass data are displayed on tables and graphs.

Growing Plants

Investigate the growth of three common garden plants: tomatoes, beans, and turnips. You can change the amount of light each plant gets, the amount of water added each day, and the type of soil the seed is planted in. Observe the effect of each variable on plant height, plant mass, leaf color and leaf size. Determine what conditions produce the tallest and healthiest plants. Height and mass data are displayed on tables and graphs.

Represent a quantity given by a shaded region as an improper fraction and as a mixed number. Experiment with different shaded regions sliced differently.

Improper Fractions and Mixed Numbers

Represent a quantity given by a shaded region as an improper fraction and as a mixed number. Experiment with different shaded regions sliced differently.

Use a lever to lift a pig, turkey, or sheep. A strongman provides up to 1000 newtons of effort. The fulcrum, strongman, and animals can be moved to any position to create first-, second-, or third-class levers.

Levers

Use a lever to lift a pig, turkey, or sheep. A strongman provides up to 1000 newtons of effort. The fulcrum, strongman, and animals can be moved to any position to create first-, second-, or third-class levers.

A brand new school is opening and it is time to elect the school mascot! Students can choose the Eagle, Lion, Bear, or Wolf. Voting results can be displayed in a table, tally chart, pictograph, bar graph, circle graph, or dot plot. You can change student votes by selecting a group of students and clicking a mascot.

Mascot Election (Pictographs and Bar Graphs)

A brand new school is opening and it is time to elect the school mascot! Students can choose the Eagle, Lion, Bear, or Wolf. Voting results can be displayed in a table, tally chart, pictograph, bar graph, circle graph, or dot plot. You can change student votes by selecting a group of students and clicking a mascot.

Live a frog's life as you hop along a number line in search of flies. Learn how addition and subtraction can be represented as movement along a number line. Fred the frog may even help you get better at adding and subtracting two-digit numbers in your head by decomposing them into tens and ones.

Number Line Frog Hop (Addition and Subtraction)

Live a frog's life as you hop along a number line in search of flies. Learn how addition and subtraction can be represented as movement along a number line. Fred the frog may even help you get better at adding and subtracting two-digit numbers in your head by decomposing them into tens and ones.

Learn Kepler's three laws of planetary motion by examining the orbit of a planet around a star. The initial position, velocity, and mass of the planet can be varied as well as the mass of the star. The foci and centers of orbits can be displayed and compared to the location of the star. The area swept out by the planet in a given time period can be measured, and data on orbital radii and periods can be plotted in several ways.

Orbital Motion - Kepler's Laws

Learn Kepler's three laws of planetary motion by examining the orbit of a planet around a star. The initial position, velocity, and mass of the planet can be varied as well as the mass of the star. The foci and centers of orbits can be displayed and compared to the location of the star. The area swept out by the planet in a given time period can be measured, and data on orbital radii and periods can be plotted in several ways.

Practice measuring the period of a pendulum. Perform experiments to determine how mass, length, gravitational acceleration, and angle affect the period of a pendulum.

Period of a Pendulum

Practice measuring the period of a pendulum. Perform experiments to determine how mass, length, gravitational acceleration, and angle affect the period of a pendulum.

Understand the phases of the Moon by observing the positions of the Moon, Earth and Sun. A view of the Moon from Earth is shown on the right as the Moon orbits Earth. Learn the names of Moon phases and in what order they occur. Click Play to watch the Moon go around, or click Pause and drag the Moon yourself.

Phases of the Moon

Understand the phases of the Moon by observing the positions of the Moon, Earth and Sun. A view of the Moon from Earth is shown on the right as the Moon orbits Earth. Learn the names of Moon phases and in what order they occur. Click Play to watch the Moon go around, or click Pause and drag the Moon yourself.

Shoot a beam of light at a metal plate in a virtual lab and observe the effect on surface electrons. The type of metal as well as the wavelength and intensity of the light can be adjusted. An electric field can be created to resist the electrons and measure their initial energies.

Photoelectric Effect

Shoot a beam of light at a metal plate in a virtual lab and observe the effect on surface electrons. The type of metal as well as the wavelength and intensity of the light can be adjusted. An electric field can be created to resist the electrons and measure their initial energies.

Study the production and use of gases by plants and animals. Measure the oxygen and carbon dioxide levels in a test tube containing snails and elodea (a type of plant) in both light and dark conditions. Learn about the interdependence of plants and animals.

Plants and Snails

Study the production and use of gases by plants and animals. Measure the oxygen and carbon dioxide levels in a test tube containing snails and elodea (a type of plant) in both light and dark conditions. Learn about the interdependence of plants and animals.

Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response.

Quadratics in Factored Form

Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response.

Compare the graph of a rational function to its equation. Vary the terms of the equation and explore how the graph is translated and stretched as a result. Examine the domain on a number line and compare it to the graph of the equation.

Rational Functions

Compare the graph of a rational function to its equation. Vary the terms of the equation and explore how the graph is translated and stretched as a result. Examine the domain on a number line and compare it to the graph of the equation.

Study wave motion, diffraction, interference, and refraction in a simulated ripple tank. A wide variety of scenarios can be chosen, including barriers with one or two gaps, multiple wave sources, reflecting barriers, or submerged rocks. The wavelength and strength of waves can be adjusted, as well as the amount of damping in the tank.

Ripple Tank

Study wave motion, diffraction, interference, and refraction in a simulated ripple tank. A wide variety of scenarios can be chosen, including barriers with one or two gaps, multiple wave sources, reflecting barriers, or submerged rocks. The wavelength and strength of waves can be adjusted, as well as the amount of damping in the tank.

Everything we know about the world comes through our senses: sight, hearing, touch, taste, and smell. In the Senses Gizmo, explore how stimuli are detected by specialized cells, transmitted through nerves, and processed in the brain.

Senses

Everything we know about the world comes through our senses: sight, hearing, touch, taste, and smell. In the Senses Gizmo, explore how stimuli are detected by specialized cells, transmitted through nerves, and processed in the brain.

Are there times when you wish you could escape from everyone and just be alone? Meet our variable friend, a real loner who doesn't like coefficients and neighboring terms. Learn how to use inverses to isolate a variable – a foundational skill for solving algebraic equations.

Solving Algebraic Equations I

Are there times when you wish you could escape from everyone and just be alone? Meet our variable friend, a real loner who doesn't like coefficients and neighboring terms. Learn how to use inverses to isolate a variable – a foundational skill for solving algebraic equations.

Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line.

Solving Using Trend Lines

Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line.

Step right up! Spin the big wheel! Each spin can result in no prize, a small prize, or a big prize. The wheel can be spun by 1, 10, or 100 players. Results are recorded on a frequency table or a circle graph. You can also design your own wheel and a sign that describes the probabilities for your wheel.

Spin the Big Wheel! (Probability)

Step right up! Spin the big wheel! Each spin can result in no prize, a small prize, or a big prize. The wheel can be spun by 1, 10, or 100 players. Results are recorded on a frequency table or a circle graph. You can also design your own wheel and a sign that describes the probabilities for your wheel.

Solve problems in chemistry using dimensional analysis. Select appropriate tiles so that units in the question are converted into units of the answer. Tiles can be flipped, and answers can be calculated once the appropriate unit conversions have been applied.

Stoichiometry

Solve problems in chemistry using dimensional analysis. Select appropriate tiles so that units in the question are converted into units of the answer. Tiles can be flipped, and answers can be calculated once the appropriate unit conversions have been applied.

Vary the dimensions of a pyramid or cone and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid.

Surface and Lateral Areas of Pyramids and Cones

Vary the dimensions of a pyramid or cone and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid.

Compare a system of linear inequalities to its graph. Vary the coefficients and inequality symbols in the system and explore how the boundary lines, shaded regions, and the intersection of the shaded regions change in response.

Systems of Linear Inequalities (Slope-intercept form)

Compare a system of linear inequalities to its graph. Vary the coefficients and inequality symbols in the system and explore how the boundary lines, shaded regions, and the intersection of the shaded regions change in response.

Use unit conversion tiles to convert from one unit to another. Tiles can be flipped to cancel units. Convert between metric units or between metric and U.S. customary units. Solve distance, time, speed, mass, volume, and density problems.

Unit Conversions

Use unit conversion tiles to convert from one unit to another. Tiles can be flipped to cancel units. Convert between metric units or between metric and U.S. customary units. Solve distance, time, speed, mass, volume, and density problems.

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problem.

Each STEM Case uses realtime reporting to show live student results.

STEM Cases take between 30 - 90 minutes for students to complete, depending on the case.

Multiple grade appropriate versions, or levels, exist for each STEM Case.

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

About Handbooks

Handbooks contain the same content, including questions and assessments, from the Handbook inside the STEM Case.

Handbooks are standalone versions of the Handbook section of the related STEM Case. They cover the relevant science content, but without the real-world problem to solve.

Each Handbook uses realtime reporting to show live student results.

Handbooks take roughly half as long as the relevant STEM Case to complete.

Multiple grade-appropriate versions are available for each Handbook.