6.3: Astronomy and planetary exploration reveal the structure and scale of the solar system. As a basis for understanding this concept, students:

6.3.1: Recognize that the solar system consists of the Earth, moon, sun, eight generally recognized other planets that orbit the sun and their satellites, and smaller objects, such as asteroids and comets.

Comparing Earth and Venus
Phases of the Moon
Solar System
Tides

6.3.2: Describe how the planets move around the sun in elliptical orbits; and the near-coplanarity of the orbits, along with the principle of conservation of momentum, is evidence essential to our understanding of how the solar system was originally formed.

Gravity Pitch
Solar System

6.3.3: Explain that the moon is Earth's only natural satellite, but several of the other planets have natural satellites as well. Understand Earth also has many artificial satellites and that all of these satellites, artificial and natural, are in elliptical orbits around their primaries.

Gravity Pitch

6.3.6: Construct models or drawings to explain that the seasons are caused by the tilt of the Earth's axis relative to the plane of its orbit and its revolution around the sun. Explain how this results in uneven heating of the various parts of Earth's surface that varies over the course of the year.

Seasons Around the World
Seasons in 3D
Seasons: Earth, Moon, and Sun
Seasons: Why do we have them?
Summer and Winter

6.3.7: Describe that as spring turns to summer at a particular place on Earth, the days grow longer and the sun moves higher in the sky, resulting in more intense heating. In fall and winter, the opposite occurs. Explain how this variation in heating results in the seasons.

Seasons in 3D
Seasons: Why do we have them?

6.3.10: Explain that gravity is a force of attraction that every mass in the universe exerts on every other mass, and everything on or anywhere near Earth is pulled toward Earth's center by a gravitational force.

Gravity Pitch

6.3.11: Describe that the sun's gravitational attraction holds Earth and the other planets in their orbits, just as the planets' gravitational attraction keeps their moons in orbit around them.

Gravity Pitch

6.4: The transfer of energy through radiation and convection currents affects many phenomena on the Earth's surface. As a basis for understanding this concept, students:

6.4.1: Explain the meaning of radiation, convection, and conduction (three mechanisms by which heat is transferred to, through, and out of the Earth's system).

Conduction and Convection
Heat Absorption
Heat Transfer by Conduction
Herschel Experiment
Radiation

6.4.2: Describe that the heat from the sun falls on Earth unevenly because of its spherical shape. Describe that regions close to the equator receive more concentrated solar energy than those closer to the poles.

Seasons in 3D

6.5: Weather (in the short run) and climate (in the long run) involve the transfer of energy in and out of the atmosphere. As a basis for understanding this concept, students:

6.5.1: Explain how different regions receive different amounts of solar heating because of their latitude, clouds, surface water ice, and other variables. Understand that this results in large-scale convective air flow and weather patterns.

Coastal Winds and Clouds
Seasons in 3D

6.5.2: Recognize and describe that the currents in the air and ocean distribute heat energy.

Coastal Winds and Clouds
Conduction and Convection

6.5.3: Explain that a great deal of heat energy is absorbed when water evaporates and is released when it condenses. Illustrate that this cycling of water and heat in and out of the atmosphere plays a critical role in climatic patterns.

Coastal Winds and Clouds

6.5.4: Explain how mountain ranges and other major geographical features affect the climate (e.g., mountains produce rain shadows, land masses interrupt ocean currents).

Coastal Winds and Clouds

6.6: Sources of materials differ in amounts, distribution, usefulness, and the time required for their formation. As a basis for understanding this concept, students:

6.6.2: Recognize that fresh water is a resource that can be depleted or polluted, making it unavailable or unsuitable for humans.

Pond Ecosystem
Water Pollution

6.6.8: Explain the important role of the water cycle within a watershed.

Water Cycle

6.7: Rock materials are continuously recycled in the rock cycle. As a basis for understanding this concept, students:

6.7.1: Recognize minerals are naturally occurring crystalline solids with definite chemical compositions and identify common minerals using a key to their diagnostic properties.)

Mineral Identification

6.7.3: Describe how igneous rocks are formed when older rocks are melted and then recrystallized. Understand they may be cooled deep in the Earth or at or near the surface as part of volcanic systems.

Rock Cycle

6.7.4: Explain how metamorphic rocks are formed when older rocks are heated (short of melting) and/or subjected to increased pressure.

Rock Cycle

6.7.5: Describe how sedimentary rocks are formed when older rocks are subjected to weathering into sediments, and those sediments are eroded, transported, deposited, then compacted and cemented.

Rock Cycle

6.7.6: Observe and describe common igneous, metamorphic, and sedimentary rocks, including granite, obsidian, pumice (igneous), slate, schist, marble (metamorphic), sandstone, shale, and limestone (sedimentary).

Rock Classification

6.8: Plate tectonics explain important features of the Earth's surface and major geologic events. As the basis for understanding this concept, students:

6.8.1: Describe the solid lithosphere of Earth, including both the continents and the ocean basins, and how it is broken into several plates that ride on a denser, hot, and gradually deformable layer in the mantle called the asthenosphere (weak sphere).

Plate Tectonics

6.8.3: Explain how lithosphere plates move very slowly, pressing against one another in some places, pulling apart in other places, and sliding past one another in others.

Plate Tectonics

6.8.4: Compare and contrast oceanic plates and continental plates.

Plate Tectonics

6.8.5: Explain the process in which plates push against one another, one of them may be dense enough to sink under the other, a process called subduction. Explain that oceanic lithosphere may sink under continental or oceanic lithosphere, but continental lithosphere does not subduct.

Plate Tectonics

6.8.7: Explain when plates push against each other and neither is dense enough to subduct (both continental), the plates will crumple and fold and form large mountain chains.

Plate Tectonics

6.8.8: Explain that earthquakes are sudden motions along breaks in the crust called faults, and volcanoes/fissures are locations where magma reaches the surface as lava.

Plate Tectonics

6.8.9: Describe how earthquakes and volcanoes often, but not always, occur along the boundaries between plates.

Plate Tectonics

6.8.11: Explain how volcanic activity along the ocean floor may form undersea mountains, which can grow above the ocean's surface to become islands (e.g., the Hawaiian Islands).

Plate Tectonics

6.9: Evidence from rocks allows us to understand the evolution of life on Earth. As the basis for understanding this concept, students:

6.9.1: Explain how the Earth's surface is built up and broken down by natural processes, including deposition of sediments, rock formation, erosion, and weathering.

Rock Cycle

6.9.3: Explain that although weathered rock is the basic component of soil, the composition and texture of soil and its fertility and resistance to erosion are greatly influenced by plant roots and debris, bacteria, fungi, worms, insects, and other organisms.

Germination
Growing Plants

6.9.6: Recognize that evidence from geologic layers and radioactive dating indicates that Earth is approximately 4.6 billion years old and life on this planet has existed for more than 3 billion years.

Half-life

Correlation last revised: 1/21/2017

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.